Skip to main content

Deterministic, Heuristic and Univariate Stochastic Models Used for Optimizing Mineral Exploration

  • Chapter
Statistical Models for Optimizing Mineral Exploration
  • 142 Accesses

Abstract

The optimization of mineral exploration is carried out through the use of quantitative models which aim at representing the various stages of the mineral exploration sequence as faithfully as possible, but in a simplified manner in order to be tractable. The models belong to four broad categories which are listed here in order of increasing complexity, for didactic purposes, as follows:

  1. (1)

    deterministic,

  2. (2)

    heuristic,

  3. (3)

    univariate stochastic,

  4. (4)

    multivariate stochastic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

BIBLIOGRAPHY FOR CHAPTER 2

Section 1: Deterministic modelling

  1. DICKINSON, S.B., 1965, Mineral exploration costs, in 8th Commonw. M. &M. Congress, V.2; Austral. Inst. of Min. and Met., pp.283–288.

    Google Scholar 

  2. EMERSON, D.W., 1977, Australian exploration and development: Comments and Costs; Bull. Aust. Soc. Expl. Geophysics, V.8, No.4, pp.91–94.

    Article  Google Scholar 

  3. GRISWOLD, W.T. and WALLACE, W.K., 1967, Organization and costs for mineral exploration in Australia; Paper presented at Pacific Southwest Mineral Industry Conference (A.I.M.E.), Pacific Grove, California, May 8, 1967.

    Google Scholar 

  4. PERRY, A.J., 1968, Organisation and costs for mineral exploration in the Southwest U.S.A.; Pac. S.W. Min. Indust. Conf., AIME, May.

    Google Scholar 

  5. PETERS, W.C., 1959, Cost of exploration for mineral raw materials; Cost Engineering, V. 4, No.3, July.

    Google Scholar 

  6. PETERS, W.C., 1967, Cost and value of drill hole information; Mining Congress Journal, V.53, No.1, Jauary, pp.56–59.

    Google Scholar 

  7. SHALLEY, M.J., 1971, Cost-probability approach to induced polarization in Australia; Bull. Austr., Soc. Expl. Geophys., V.2., No.4, pp.25–33.

    Article  Google Scholar 

  8. ZIMMERMAN, O.T., 1968, Elements of capital cost estimation; Cost. Eng., V.13, No.4, pp.4–18.

    Google Scholar 

Section 2; Stochastic modelling: economic and geometric modelling

  1. AGTERBERG, F.P., 1974, Geomathematics (Chpt. 7, 11 &15); Elsevier Publ., Amsterdam. Holland.

    Google Scholar 

  2. AGTERBERG, F.P., 1980, Lognormal models for several metals in selected areas of Canada; Reprint, Memoire du B.R.G.M., No.106, pp.83–90.

    Google Scholar 

  3. AGTERBERG, F.P. and DIVI, S.R., 1978, A statistical model for the distribution of copper, lead and zinc in the Canadian Appalachian region; Econ. Geol., V.73, pp.230–245.

    Article  Google Scholar 

  4. AITCHINSON, J. and BROWN, J.A.C., 1966, The lognormal distribution with special references to its use in Economics; Cambridge Univ. Press, U.K.

    Google Scholar 

  5. ALLAIS, M., 1957, Methods of appraising economic prospects of mining exploration over large territories; Manag. Sc., V.3, pp.285–347.

    Article  Google Scholar 

  6. BOLDY, J., (Un)certain exploration facts and figures; Can. Inst. M.&M. Bull., May, pp.86–95.

    Google Scholar 

  7. DAVIS, J.C., 1973, Statistics and data analysis in Geology; J.Wiley, N.Y.

    Google Scholar 

  8. DIVI, S.R., 1980, Deposit modeling and resource estimation of stratiform massive sulphide deposits in Canada; Comput. &GeoSc., V.6, No.2, pp.163–174.

    Article  Google Scholar 

  9. GIBBONS, J.G., OLKIN, I. and FOBEL, M., 1977, Selecting and ordering populations; J. Wiley, New York.

    Google Scholar 

  10. GRIFFITHS, J.C., 1962, Frequency distributions of some natural resources materials; Bull. No.63, Min. Ind. Expmt. Stat., University of Pennsylvania, pp.174–198.

    Google Scholar 

  11. JOHNSON, N.I. and KOTZ, S., 1970, Continuous univariate distributions (V.21); Houghton Mifflin, Boston, Mass.

    Google Scholar 

  12. JONES, M.P. and BEAVEN, C.H.J., 1971, Sampling of non-gaussian mineralogical distributions; Trans. Inst. M.&M., V.80, pp.B3l6–B322.

    Google Scholar 

  13. KAUFMAN, G., 1964, Size and distribution of oil and gas fields, Bull. Am Assoc, Petrol. Gelogists, V.48, p.534.

    Google Scholar 

  14. KOCH, G.S. and LINK, R.F., 1970, Statistical analysis of geological data, (Chpt. 6, 12, 13 and 16), J.Wiley, New York, U.S.A.

    Google Scholar 

  15. KRUMBEIN, W.C. and GRAYBILL, F.A., 1965, Introduction to statistical models in Geology; (Chpts 5, 6, 7, 8) McGraw Hill, New York.

    Google Scholar 

  16. PRETORIUS, D.A. and HEMPKINS, W.B., 1968, Statistical moments of the frequency distribution or Rhodesian gold mineralization in time and space; a preliminary analysis; Tpans. Geol. Soc. S. Africa, V.71, pp.9–19.

    Google Scholar 

  17. SANGSTER, D.F., 1980, Quantitative characteristics of volcanogenic massive sulfide deposits; Can. Inst. M.&M., Bull., February,’pp.74–81.

    Google Scholar 

  18. SARMA, D.D., 1969, A preliminary statistical study on the basic mine valuation problems at Kolar Goldfields, Mysore State, India; Geo-expl., V.7, No.2, pp.97–105.

    Google Scholar 

  19. SARMA, D.D., 1979, An exploration strategy for prospecting with a case study on copper prospects at Ingladahl, India; Miner. Deposits, V.14, pp.263–279.

    Google Scholar 

  20. SHARP, W.E., 1976, A log-normal distribution of alluvial diamonds with an economic cutoff; Econ. Geology, V.71, pp.648–655.

    Article  Google Scholar 

  21. SINCLAIR, A.J., 1974, Probability graphs of ore tonnages in mining camps, a guide to exploration; Can. Inst. M.&M., Bull., Oct., pp.71–75.

    Google Scholar 

  22. UHLER, R.S. and BRADLEY, P., 1970, Stochastic model for determining the economic prospects of petroleum exploration over large regions; Jour. Am. Stat. Assoc, V.65, No.330, pp.623–630.

    Article  Google Scholar 

  23. WALPOLE, R.E., 1974, Introduction to Statistics; Macmillan, New York.

    Google Scholar 

Section 3: Stochastic modelling: ore occurrence

  1. ALLAIS, M., 1957, Method of appraising economic prospects of mining exploration over large territories; Management Sci., V.3, pp.285–347.

    Article  Google Scholar 

  2. ANNIS, R.C., CRANSTONE, D.A.’and VALLEE, M., 1978, A survey of known deposits in Canada that are not being mined; Bull. M.R.181, Dept. of Mines, Energy and Resources, Ottawa, Canada.

    Google Scholar 

  3. ANSCOMBE, F.J., 1949, The statistical analysis of insect counts based on the negative binomial distribution; Biometrics, V.5, pp.165–173.

    Article  Google Scholar 

  4. ANSCOMBE, F.J., 1950, Sampling theory of the negative binomial and logarithmic series distributions; Biometrika, V.37, pp.358–382.

    Google Scholar 

  5. AUSTRALASIAN INSTITUTE OF MINING AND METALLURGY, 1975, Economic geology of Australia and Papua-New Guinea; Melbourne, Australia.

    Google Scholar 

  6. BARTLETT, M.S., 1960, An introducton to stochastic processes, Cambridge, U. K.

    Google Scholar 

  7. BARTLETT, M.S., 1960, Stochastic population models in ecology and epidemiology, Methuen, London

    Google Scholar 

  8. BLISS, C., 1953, Fitting the negative binomial distribution to biological data; Biometrics, V.2, pp.176–200.

    Article  Google Scholar 

  9. BOZDAR, L.B. and KITCHENHAM, B.A., 1972, Statistical appraisal of the occurrence of leadmines in the Northern Pennines; Trans. Inst. Min. &Metall., V.81, pp.Bl83–B187.

    Google Scholar 

  10. BRANT, A.A., 1968, The pre-evaluation of the possible profitability of exploration prospects; Mineral. Deposita, V.3, pp.1–17.

    Article  Google Scholar 

  11. BROWN, D. and ROTHERY, P., 1978, Randomness and local regularity of points in a plane; Biometrika, V.65, pp.115–122.

    Article  Google Scholar 

  12. CLARK, P.J., 1955, On some aspects of spatial patterns in biological populations; Science, V.121, pp.397–398.

    Article  Google Scholar 

  13. CLARK, P.J., 1956, Grouping in spatial distributions, Science, V.123, pp.123–125.

    Article  Google Scholar 

  14. CLARK, P.J. and EVANS, F.C., 1954, Distance to nearest neighbour as a measure of spatial relationships in populations; Ecology, V.35,.pp.445–453.

    Article  Google Scholar 

  15. CONOVER, W.J., BEMENT, T.R. and IMAN, R.L., 1979, On a method for detecting clusters of possible Uranium deposits; Technom., V.21, No.3, pp.277–282.

    Article  Google Scholar 

  16. DACEY, M.F., 1960, A note on the derivation of nearest neighbour distances; J. of Reg. Sc., V.2, pp.81–87.

    Article  Google Scholar 

  17. DACEY, M.F., 1962, Analysis of central place and point patterns by a nearest neighbour method; Land studies in Geography, V.24, pp.55–75.

    Google Scholar 

  18. DACEY, M.F., 1964, Two-dimensional random point patterns: a review and an interpretation; Papers, Regional Science Association, V.13, pp.41–55.

    Article  Google Scholar 

  19. DE GEOFFROY, J.G. and WU, S.M., 1970, A statistical study of ore occurrences in the Greenstone Belts of the Canadian Shield; Econ. Geol., V.65, pp.496–504.

    Article  Google Scholar 

  20. DE GEOFFROY, J. and WIGNALL, T.K., 1970, Application of statistical decision techniques to the selection of prospecting areas and drilling targets in regional exploration; Can. Inst. M.&M., Bull., August, pp.893–899.

    Google Scholar 

  21. DE GEOFFROY, J.G. and WIGNALL, T.K., 1971, A probabilistic appraisal of mineral resources in a portion of the Grenville Province of the Canadian Shield; Econ. Geol., V.66, pp.466–479.

    Article  Google Scholar 

  22. DOUGLAS, J.B., 1955, Fitting the Neyman type A (two parameter) distribution; Biometrics, V.11, pp.149–173.

    Article  Google Scholar 

  23. DREW, L.J. and GRIFFITHS, J.C., 1965, Size, shape and arrangements of some oilfields in the U.S.A.; short course and symposium on Computers and Computer Applications in Mining and Exploration, University of Arizona, V.3, pp.FF1–FF31.

    Google Scholar 

  24. DREW, M.W., 1974, A deposit distribution model for uranium; Programmes Analysis Unit Report 10/74, London, U.K. Atomic Energy Authority.

    Google Scholar 

  25. EBDON, D., 1977, Statistics in Geography; a practical approach, (Chpt 7); B. Blackwell, Oxford, U.K.

    Google Scholar 

  26. EVANS, D.A., 1953, Experimental evidence concerning contagious distributions in ecology; Biometrika, V.40, pp.186–211.

    Google Scholar 

  27. GRIFFITHS, J.C., 1962, Frequency distributions of some natural resources materials; Bull. No.63, Min. Ind. Expmt. Stat., University of Pennsylvania, pp.174–198.

    Google Scholar 

  28. HARRIS, D.P. and AGTERBERG, F.P., 1981, The appraisal of mineral resources; Econ. Geol., V.75, pp.897–938.

    Google Scholar 

  29. HARVEY, D.W., 1966, Geographical processes and the analysis of point patterns; Trans. Inst. Br. Geogr., V.49, pp.81–95.

    Article  Google Scholar 

  30. HEYL, A.V. and AGNEW, A.F., 1959, The Geology of the Upper Mississippi Valley Zinc-Lead District; U.S.G.S. Prof. Paper No.309.

    Google Scholar 

  31. JOHNSTON, N.I. and KOTZ, S., 1970, Discrete univariate distri9butions (V.1); Houghton Mifflin, Boston, Mass., U.S.A.

    Google Scholar 

  32. MacDOUGAL, E.B., 1976, Computer programming for spatial problems; E. Arnold Publ., London.

    Google Scholar 

  33. MATHER, P.M., 1976, Computers in Geography: a practical approach, (Chpt 4); also computer program for nearest neighbour analysis, B. Blackwell, Oxford, U.K., pp.52–54.

    Google Scholar 

  34. McCONNELL, M., 1966, Quadrat methods in map analysis, Discussion Paper No.3; Dept. of Geography, University of Iowa.

    Google Scholar 

  35. MILLER, R.L. and KAHN, J.S., 1962, Statistical analysis in the Geological Sciences, (Chpt 16); J. Wiley, New York, U.S.A.

    Google Scholar 

  36. MORISITA, M., 1954, Estimation of population density by spacing method; Memoirs, Faculty of Science, Kyushu University, Series E, No.1, pp.187–197.

    Google Scholar 

  37. MORISITA, M., 1959, Measuring the dispersion of individuals and analysis of the distributional patterns; Memoirs, Faculty of Science, Kyushu University, Series E, No.2, pp.215–233.

    Google Scholar 

  38. NEFT, D.S., 1966, Statistical analysis for areal distribution, Monograph 2; Regional Sc. Res. Inst., Philadelphia, Penna. U.S.A.

    Google Scholar 

  39. NEYMAN, J., 1939, On a new class of ’contagious` distributions, applicable in Entomology and Bacteriology; Annals of Mathematical Statistics, V.10, pp.35–37.

    Article  Google Scholar 

  40. NEYMAN, J. and SCOTT, E.L., 1957, On a mathematical theory of populations conceived as conglomerations of clusters; Cold Spring Harbor Symposia on Quantitative Biology, V.22, pp.109–120.

    Google Scholar 

  41. SHENTON, L.R., 1949, On the efficiency of the method of moments and Neyman’s Type A distribution; Biometrika, V.36, pp.450–454.

    Google Scholar 

  42. SKELLAM, J.G., 1951, Random dispersal in theoretical populations; Biometrika, V.38, pp.196–218.

    Google Scholar 

  43. SKELLAM, J.G., 1953, Studies in statistical Ecology -1. spatial pattern; Biometrika, V.39, pp.346–362.

    Google Scholar 

  44. SKELLAM, J.G., 1958, On the derivation and applicablity of Neyman’s Type A distribution; Biometrika, V.45, pp.32–36.

    Google Scholar 

  45. SLICHTER, L.B., 1960, The need for a new philosophy of prospecting; Mining Eng., June, pp.570–576.

    Google Scholar 

  46. ROGERS, A., 1974, Statistical Analysis of Spatial Dispersion; the Quadrat Method, (Chpt 1); Pion Ltd., London, U.K.

    Google Scholar 

  47. SARMA, D.D., 1979, An exploration strategy for prospecting with a case study on copper prospects at Ingladahl, India; Mineral. Deposita, V.14, pp.263–279.

    Article  Google Scholar 

  48. TAKACS, L., 1960, Stochastic processes, Methuen, London.

    Google Scholar 

  49. THOMAS, M., 1949, A generalisation of Poisson’s binomial limit for use in Ecology; Biometrika, V.36, pp.18–25.

    Google Scholar 

  50. WILLIAMSON, E. and BRETHERTON, M.H., 1963, Tables of the negative binomial probability distribution; John Wiley, New York, U.S.A.

    Google Scholar 

Section 4: Evaluation of the probability of ore occurrence; subjective approach

  1. BARRY, G.S. and FREYMAN, A.J., 1970, Mineral endowment of the Canadian Northwest: a subjective probability assessment; Can. Inst. M.&M. Bull., September, pp.1031–1038.

    Google Scholar 

  2. ELLIS, J., HARRIS, D.P. and VAN WIE, N., 1975, A subjective probability appraisal of uranium resources in the State of New Mexico; U.S. Energy Research and Development Administration, Grand Junction, Colorado, USA.

    Google Scholar 

  3. GOLABI, K. and LAMONT, A., 1981, A probabilistic approach to the assessment of uranium resources; Jour. Math. Geol. V.13, No.6.

    Google Scholar 

  4. HARRIS, D.P., 1973, A subjective appraisal of metal endowment of Northern Sonora, Mexico; Econ. Geol., V.68, No.2, pp.222–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Wignall, T.K., De Geoffroy, J. (1987). Deterministic, Heuristic and Univariate Stochastic Models Used for Optimizing Mineral Exploration. In: Statistical Models for Optimizing Mineral Exploration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1861-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1861-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9038-4

  • Online ISBN: 978-1-4613-1861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics