Skip to main content

Nutrition in Renal Disease

  • Chapter
  • 114 Accesses

Abstract

In the last 2 years, there has been a renaissance of interest in low-protein diets in the treatment of chronic renal failure (CRF), due mainly to suggestions that a low-protein intake may slow or even halt progression of renal insufficiency. It also has become apparent that other modifications of the diet, including phosphate restriction, altering the proportions of fatty acids, or adding polyunsaturated fatty acids, might have considerable impact on the course of the disease and the metabolism of the patient. Unfortunately, the optimal intake for most nutrients in renal failure, including amino acids, vitamins, and trace elements, remains undefined. Many descriptive studies have appeared, but our understanding of the pathophysiology is still limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitch, W. E., 1984, The influence of the diet on the progression of renal insufficiency, Annu. Rev. Med. 35: 249.

    PubMed  CAS  Google Scholar 

  2. Maroni, B. J., Steinman, T. I., and Mitch, W. E., 1985, A method for estimating nitrogen intake of patients with chronic renal failure, Kidney Int. 27: 58.

    PubMed  CAS  Google Scholar 

  3. Alvestrand, A., Bucht, H., Gutierrez, A., and Bergstrom, J., 1985, Progression of chronic renal failure in man as influenced by frequency and quality of clinical follow-up, Kidney Int. 27: 240.

    Google Scholar 

  4. Remuzzi, G., Zoja, C., Remuzzi, A., Rossini, M., Battagha, C., Broggini, M., and Bestani, T., 1985, Low-protein diet prevents glomerular damage in Adriamycin-treated rats, Kidney Int. 28:21.

    Google Scholar 

  5. Kenner, C. H., Evan, A. P., Blomgren, P., Arnoff, G. P., and Luft, F. C., 1985, Effect of protein intake on renal function and structure in partially nephrectomized rats, Kidney Int. 27: 739.

    PubMed  CAS  Google Scholar 

  6. Seney, F. D. and Wright, F. S., 1985, Dietary protein suppresses feedback control on glomerular filtration in rats, J. Clin. Invest. 75: 558.

    PubMed  CAS  Google Scholar 

  7. Brezis, M., Silva, P., and Epstein, F. H., 1984, Amino acids reduce renal vasodilatation in isolated perfused kidney: Coupling to oxidative metabolism, Am. J. Physiol. 247: H999.

    PubMed  CAS  Google Scholar 

  8. Anderson, S., Meyer, T. W., Rennke, H. G., and Brenner, B. M., 1985, Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass, J. Clin. Invest. 76: 612.

    PubMed  CAS  Google Scholar 

  9. Zatz, R., Meyer, T. W., Rennke, H. G., and Brenner, B. M., 1985, Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy, Proc. Natl. Acad. Sci. USA 82: 5963.

    PubMed  CAS  Google Scholar 

  10. Mogensen, C. E. and Christensen, C. K., 1984, Predicting diabetic nephropathy in insulin-dependent patients, N. Engl. J. Med. 311: 89.

    PubMed  CAS  Google Scholar 

  11. Mogensen, C. E., 1984, Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes, N. Engl. J. Med. 310: 356.

    PubMed  CAS  Google Scholar 

  12. Laouari, D. and Kleinknecht, C., 1985, The role of nutritional factors in the course of experimental renal failure, Clin. Nephrol. 5: 147.

    Google Scholar 

  13. Barcelli, U. and Pollak, V. E., 1985, Is there a role for polyunsaturated fatty acids in the prevention of renal disease and renal failure? Nephron 41: 209.

    PubMed  CAS  Google Scholar 

  14. Barcelli, U. O. and Pollak, V. E., 1986, Prostaglandins and progressive renal insufficiency, in: Contemporary Issues in Nephrology, The Progressive Nature of Renal Disease ( W. E. Mitch, ed.), Churchill Livingstone, New York, p. 65.

    Google Scholar 

  15. Kher, V., Barcelli, U., Weiss, M., and Pollak, V. E., 1985, Effects of dietary linoleic acid enrichment on induction of immune complex nephritis in mice, Nephron 39: 261.

    PubMed  CAS  Google Scholar 

  16. Hirschberg, R., von Herrath, D., Klaus, H., Hofer, W., Schuster, C., Rottka, H., and Schaefer, K., 1984, Effect of diets containing varying concentrations of essential fatty acids and triglycerides on renal function in uremic rats and NZB/NZW F. mice, Nephron 38: 233.

    PubMed  CAS  Google Scholar 

  17. Bosch, J. P., Lauer, A., and Glabman, S., 1984, Short-term protein loading in assessment of patients with renal disease, Am. J. Med. 77: 873.

    PubMed  CAS  Google Scholar 

  18. Rodriguez-Iturbe, B., Herrera, J., and Garcia, R., 1985, Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: Evidence for glomerular hyperfiltration, Lancet 2: 461.

    PubMed  CAS  Google Scholar 

  19. Bergstrom, J., Ahlberg, M., and Alvestrand, A., 1985, Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects, Acta Med. Scand. 217: 189.

    PubMed  CAS  Google Scholar 

  20. Hirschberg, R., Rottka, H., von Herrath, D., Pauls, A., and Schaefer, K., 1985, Effect of an acute protein load on the creatinine clearance in healthy vegetarians, Klin. Wochenschr. 63: 217.

    PubMed  CAS  Google Scholar 

  21. terWee, P. M., Geerlings, W., Rosman, J. B., Sluiter, W. J., vander Geest, S., and Donker, A. J. M., 1985, Testing renal reserve filtration capacity with an amino acid solution, Nephron 41: 193.

    CAS  Google Scholar 

  22. Barsotti, G., Giannoni, A., Morelli, E., Lazzeri, M., Vlamis, I., Baldi, R., and Giovannetti, S., 1984, The decline in renal function slowed by very low phosphorus intake in chronic renal patients following a low nitrogen diet, Clin. Nephrol. 21: 54.

    PubMed  CAS  Google Scholar 

  23. Alvestrand, A. and Bergstrom, J., 1986, Amino-acid supplements and the course of chronic renal disease, in: Contemporary Issues in Nephrology, The Progressive Nature of Renal Disease ( W. E. Mitch, ed.), Churchill Livingstone, New York, p. 219.

    Google Scholar 

  24. Rosman, J. B., terWee, P. M., Meijer, S., Piers-Becht, T. P. M., Sluiter, W. J., and Donker, A.J. M., 1984, Prospective randomized trial of early dietary protein restriction in chronic renal failure, Lancet 2: 1291.

    PubMed  CAS  Google Scholar 

  25. Mitch, W. E., 1986, Measuring the rate of progression of renal insufficiency, in: Contemporary Issues in Nephrology, The Progressive Nature of Renal Disease ( W. E. Mitch, ed.), Churchill Livingstone, New York, p. 167.

    Google Scholar 

  26. Oldrizzi, L., Rugue, G., Valvo, E., Lupo, A., Loschiavo, C., Gamararo, L., Tessitore, N., Fabis, A., Panzetta, G., and Maschio, G., 1985, Progression of renal failure in patients with renal disease of diverse etiology on proteinrestricted diet, Kidney Int. 27: 553.

    PubMed  CAS  Google Scholar 

  27. El-Nahas, A. M., Masters-Thomas, A., Brady, S. A., Farrington, K., Wilkinson, V., Hilson, A. J. W., Varghese, Z., and Moorhead, J. F., 1984, Selective effect of low protein diets in chronic renal diseases, Br. Med. J. 289: 1337.

    CAS  Google Scholar 

  28. Mitch, W. E., Walser, M., Steinman, T. I., Hill, S., Zeger, S., and Tungsanga, K., 1984, The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure, N. Engl. J. Med. 311: 623.

    PubMed  CAS  Google Scholar 

  29. Mitch, W. E., 1981, Nutrition in renal disease, in: Contemporary Nephrology ( S. Klahr and S. G. Massry, eds.) Plenum Press, New York.

    Google Scholar 

  30. Mitch, W. E., 1983, Nutrition in renal disease, in: Contemporary Nephrology, Volume 2, (S. Klahr and S. G. Massry, eds.), Plenum Press, New York.

    Google Scholar 

  31. Maroni, B. J. and Mitch, W. E., 1985, Nutrition in renal disease, in: Contemporary Nephrology, Volume 3 (S. Klahr and S. G. Massry, eds.), Plenum Press, New York.

    Google Scholar 

  32. Schmitz, O., Alberti, K. G. M. M, Christensen, N.J, Hading, C, Hjoellund, E, Beck-Nielsen, H, and Oerskov, H, 1985, Aspects of glucose homeostasis in uremia as assessed by the hyperinsulinemic euglycemic clamp technique, Metabolism 34: 465.

    PubMed  CAS  Google Scholar 

  33. Milutinovic, S, Breyer, D, Molnar, V, Stefovic, A, Jankovic, N., Skrabalo, Z, and Rocic, B, 1985, Change in insulin binding during hemodialysis in uremic patients, Nephron 41: 307.

    PubMed  CAS  Google Scholar 

  34. Pederson, O., Schmitz, O, Hjoellund, E, Richelson, B, and Hansen, H. E, 1985, Postbinding defects of insulin action in human adipocytes from uremic patients, Kidney Int. 27: 780.

    Google Scholar 

  35. DeFronzo, R. A. and Smith, J. D, 1985, Is glucose tolerance harmful for the uremic patient? Kidney Int. 28(Suppl. 17):S-88.

    Google Scholar 

  36. Helinek, T. G, Sadel, S, and Caro, J. F, 1984, The effects of chronic uremia on glucagon binding and action in isolated rat hepatocytes, Metabolism 33: 158.

    PubMed  CAS  Google Scholar 

  37. Kalhan, S. C, Ricanati, E. S, Tserng, K-Y, and Savin, S. M, 1983, Glucose turnover in chronic uremia: Increased recycling with diminished oxydation of glucose, Metabolism 32: 1155.

    PubMed  CAS  Google Scholar 

  38. McCaleb, M. L., Mevorach, R, Freeman, R. B, Izzo, M. S, and Lockwood, D. H, 1984, Induction of insulin resistance in normal adipose tissue by uremic human serum, Kidney Int. 25: 416.

    PubMed  CAS  Google Scholar 

  39. McCaleb, M. L, Izzo, M. S, and Lockwood, D. H, 1985, Characterization and patial purification of a factor from human uremic serum that induces insulin resistance, J. Clin. Invest. 75: 391.

    PubMed  CAS  Google Scholar 

  40. Akmal, M, Massry, S. G, Goldstein, D. A, Fanti, P, Weisz, A, and DeFronzo, R. A, 1985, Role of parathyroid hormone in glucose intolerance of chronic renal failure, J. Clin. Invest. 75: 1037.

    PubMed  CAS  Google Scholar 

  41. Druml, W, Kleinberger, G, and Buerger, U, 1983, Renal failure: Metabolism and supply of amino acids, in: New Aspects of Clinical Nutrition ( G. Kleinberger and E. Deutsch, eds.), Karger, Basel, p. 412.

    Google Scholar 

  42. Alvestrand, A, 1985, Amino acid metabolism in patients with chronic renal failure, Clin. Nutr. 4 (Suppl. 1): 14.

    Google Scholar 

  43. Tizianello, A, DeFerrari, G, Garibotto, G., Robaudo, C, Canepa, A., and Passerone, G, 1985, Is amino acid imbalance harmful to patients in chronic renal failure, Kidney Int. 28(Suppl. l7):S-70.

    Google Scholar 

  44. Zern, M. A., Yap, S. H., Strair, R. K, Kaysen, G. A., and Shafritz, D. A, 1984, Effect of chronic renal failure on protein sythesis and albumin messenger ribonucleic acid in rat liver, J. Clin. Invest. 73: 1167.

    PubMed  CAS  Google Scholar 

  45. Chan, M. K, Persaud, J, Varghese, Z, and Moorehead, J. F, 1985, Pathogenic roles of post-heparin lipases in lipid abnormalities in hemodialysis patients, Kidney Int. 25: 812

    Google Scholar 

  46. Druml, W, Zechner, R., Magometschnigg, D, Lenz, K, Kleinberger, G, Laggner, A, and Kostner, G, 1985, Post-heparin lipolytic activity in acute renal failure, Clin. Nephrol. 23: 289.

    PubMed  CAS  Google Scholar 

  47. McLeod, R, Reeve, C. E, and Frohlich, J, 1984, Plasma lipoproteins and lecithin:Cholesterol acyltransferase distribution in patients on dialysis, Kidney Int. 25: 683.

    PubMed  CAS  Google Scholar 

  48. Crawford, G. A., Savadie, E., Stewart, J. H., and Mahony, J. F., 1979, Inhibitors of normal plasma lipases by serum from chronic renal failure patients, Trans. Am. Soc. Artif. Ind. Organ 25: 426.

    CAS  Google Scholar 

  49. Henning, H. V. and Balusek, E., 1981, Lipid metabolism in uremia: Effect of regular hemofiltration treatment, J. Dialysis 1: 595.

    Google Scholar 

  50. Zimmermann, E. and Hohenegger, M., 1979, Lipid metabolism in uremic and non-uremic acidosis, Nephron 24: 217.

    PubMed  CAS  Google Scholar 

  51. Huttuner, J., Pasternak, A., Vanttiner, T., Elmholm, C., and Nikkila, E., 1928, Lipoprotein metabolism in patients with chronic uremia. Effects of hemodialysis on serum lipoprotein and postheparin plasma triglyceride lipases, Acta Med. Scand. 203: 211.

    Google Scholar 

  52. Holdsworth, G., Stocks, J., Doson, P., and Galton, D. J., 1982, An abnormal triglyceride-rich lipoprotein containing excess sialylated apolipoprotein CIII, J. Clin. Invest. 69: 932.

    PubMed  CAS  Google Scholar 

  53. Roullet, J-B., Lacour, B., Yvert, J-P., Prat, J-J., and Drueke, T., 1985, Factors of increase in serum triglyceride-rich lipoproteins in uremic rats, Kidney Int. 27: 420.

    PubMed  CAS  Google Scholar 

  54. Hsia, S. L., Perez, G. O., Mendez, A. J., Schiffman, J., Fletcher, S., and Stoudemire, J. B., 1985, Defect of cholesterol transport in patients receiving maintenance hemodialysis, J. Lab. Clin. Med. 106: 53.

    PubMed  CAS  Google Scholar 

  55. Gonen, B., Goldberg, A. P., Harter, H. R., and Schonfeld, G., 1985, Abnormal cell-interactive properties of low-density lipoproteins isolated from patients with chronic renal failure, Metabolism 34: 10.

    PubMed  CAS  Google Scholar 

  56. Ritz, E., Augustin, J., Bommer, J., Gnasso, A., and Haberbosch, W., 1985, Should hyperlipidemia of renal failure be treated? Kidney Int. 28(Suppl. 17):S-84.

    Google Scholar 

  57. Kobayashi, N., Okubo, M., Marumo, S., and Nakamura, H., 1983, Effect of dialysis on lipid metabolism in chronic renal failure—Acetate versus bicarbonate, Int. J. Artif. Org. 6: 187.

    CAS  Google Scholar 

  58. Golper, T. A., 1984, Therapy for uremic hyperlipidemia, Nephron 38: 217.

    PubMed  CAS  Google Scholar 

  59. Goldberg, A. P., Geltman, E. M., Hagberg, J. M., Garvin, J. R., Delmez, J. A., Carney, R. M., Naumovicz, A., Oldfield, M. H., and Harter, H. R., 1983, Therapeutic benefit of excercise training for hemodialysis patients, Kidney Int. 24(Suppl. 16):S-303.

    Google Scholar 

  60. Shalom, R., Blumenthal, J. A., Williams, S., McMurray, R. G., and Dennis, V. W., 1984, Feasibility and benefits of exercise training in patients on maintenance dialysis, Kidney Int. 25: 958.

    PubMed  CAS  Google Scholar 

  61. Attman, P. O., Gustafson, A., Alaupovic, P., and Wang, C-S., 1984, Effect of protein-reduced diet on plasma lipids, apolipoproteins and lipolytic activities in patients with chronic renal failure, Am. J. Nephrol. 4: 92.

    PubMed  CAS  Google Scholar 

  62. Hamazaki, T., Nakazawa, R., Tateno, S., Shishido, H., Isode, K., Hattori, Y., Yoshida, T., Fujita, T., Yano, S., and Kamagai, A., 1984, Effects of oil rich in eicasopentaenoic acid on serum in hyperlipidemic hemodialysis patients, Kidney Int. 26: 81.

    PubMed  CAS  Google Scholar 

  63. Leschke, M., Rumpf, K. W., Eisenhauer, T., Fuchs, C., Becker, K., Kloethe, U., and Scheler, F., 1983, Quantitative assessement of carnitine loss during hemodialysis and hemofiltration, Kidney Int. 24(Suppl. 16):S-143.

    Google Scholar 

  64. Roessle, C, Kohse, K. P, Gloeggler, A, Pflieger, M, Franz, H-E, Bulla, M, and Furst, P, 1985, Alterations in carnitine metabolism in adults and children undergoing intermittent chronic hemodialysis, Clin. Nutr. 4 (Suppl. 1): 51A.

    Google Scholar 

  65. Weschler, A, Aviram, M, Levin, M, Better, O. S., and Brook, J. G., 1984, High dose of L-carnitine increases platelet aggregation and plasma triglyceride levels in uremic patients on hemodialysis, Nephron 38: 120.

    PubMed  CAS  Google Scholar 

  66. Basile, C, Lacour, B, DiGuilio, S, and Drueke, T, 1985, Effect of oral carnitine supplementation on disturbances of lipid metabolism in the uremic rat, Nephron 39: 50.

    PubMed  CAS  Google Scholar 

  67. Byron, P. R., Mallick, N. P, and Taylor, G, 1976, Immune potential in human uremia: Relationship of glomerular filtration rate to depression of uremic potential, J. Clin. Pathol. 29: 765.

    PubMed  CAS  Google Scholar 

  68. Berkelhammer, C. H, Leiter, L. A, Jeejeebhoy, K. N, Detsky, A. S, Oreopoulos, D. P, Uldall, P. R, and Baker, J. P., 1985, Skeletal muscle function in chronic renal failure: An index of nutritional status, Am. J. Clin. Nutr. 42: 845.

    PubMed  CAS  Google Scholar 

  69. Schoenfeld, P. Y., Henry, R. R., Laird, N. M, and Roxe, D. M., 1983, Assessement of nutritional status of the national cooperative dialysis study population, Kidney Int. 23(Suppl. 13):S-80.

    Google Scholar 

  70. Thunberg, B.J, Ed, M, Swamy, A. P, and Cestero, R. V. M, 1981, Cross sectional and longitudinal nutritional measurements in maintenance hemodialysis patients, Am. J. Clin. Nutr. 34: 2005.

    Google Scholar 

  71. Wolfson, M, Strong, C. J, Minturn, D, Gray, D. K, and Kopple, J. D, 1984, Nutritional status and lymphocyte function in maintenance hemodialysis patients, Am. J. Clin. Nutr. 37: 547.

    Google Scholar 

  72. Panzetta, G, Guerra, U, D’Angelo, A, Sandrini, S, Terzi, A, Oldrizzi, L., and Maiorca, R., 1985, Body composition and nutritional status in patients on continuous ambulatory peritoneal dialysis (CAPD), Clin Nephrol. 23: 18.

    PubMed  CAS  Google Scholar 

  73. Sargent, J. A, 1983, Control of dialysis by a single-pool urea model: The national cooperative dialysis study, Kidney Int. 23(Suppl.13):S-19.

    Google Scholar 

  74. Davidson, W. B. and Davidson, S. M, 1984, Teaching dialysis kinetics with a minicomputer, Am. J. Nephrol. 4: 19.

    PubMed  CAS  Google Scholar 

  75. Astrug, A, Kuleva, V., Kuleff, T., Kirrakov, Z, Tomov, A, and Djingova, R, 1984, Trace elements in blood and plasma of patients with chronic renal failure treated with maintenance hemodialysis, Trace Elements Med. 1: 65.

    Google Scholar 

  76. Marumo, F, Tsukamoto, Y, Iwanami, S, Kishimoto, T, and Yamagami, S., 1984, Trace element concentration in hair, fingernails and plasma of patients with chronic renal failure on hemodialysis and hemofiltration, Nephron 38: 267.

    PubMed  CAS  Google Scholar 

  77. Aggett, P. J, 1984, Zinc metabolism in chronic renal insufficiency with and without dialysis therapy, Contrib. Nephrol. 38: 95.

    PubMed  CAS  Google Scholar 

  78. Filteau, S. M. and Woodward, B, 1982, The effect of serum protein deficiency on serum zinc concentration of mice fed a requirement level or a high level of dietary zinc, J. Nutr. 112: 1974.

    PubMed  CAS  Google Scholar 

  79. Grekas, D., Nicolaides, P., Tsakalos, N., and Tourkantonis, A., 1985, Pharmacokinetics of zinc in chronic renal failure patients, Trace Elements Med. 2: 139.

    Google Scholar 

  80. Sprenger, K. G. B., Schmitz, J., Hetzel, B., Bundschu, D., and Franz, H. E., 1984, Zinc and sexual dysfunction, Contr. Nephrol. 38: 119.

    CAS  Google Scholar 

  81. Eschbach, J. W., 1984, Iron kinetics in healthy individuals and in chronic renal insufficiency, Contr. Nephrol. 38: 129.

    CAS  Google Scholar 

  82. Van de Vyver, F. L., Vanheute, A. A., Majelyne, W. M., O’Haese, P., Blockx, P. P., Bekaert, A. B., Buysses, N., DeKeersmaecker, W., and DeBroe, M. E., 1984, Serum ferritin as a guide for iron stores in chronic hemodialysis patients, Kidney Int. 26: 451.

    Google Scholar 

  83. Hilfenhaus, M., Koch, K-M., Brechstein, P. B., Schmidt, H., Fassbinder, W., and Baldamus, C. A., 1984, Therapy and monitoring of hypersiderosis in chronic renal insufficiency, Contr. Nephrol. 38: 167.

    CAS  Google Scholar 

  84. Blumberg, A., Marti, H. R., and Graber, C. H., 1984, Parameters for the assessment of iron metabolism in chronic renal insufficiency. Contr. Nephrol. 38: 135.

    CAS  Google Scholar 

  85. Hopfer, S. M., Linden, J. V., Crisostomo, M. C., Catalanatto, F. A., Galen, M., and Sunderman, F. W., 1985, Hypernickelemia in hemodialysis patients, Trace Elements Med. 2: 68.

    Google Scholar 

  86. Clyne, N., Lins, L-E., and Pehrsson, S. K., 1985, Serum cobalt in relation to cardiac performance in patients with chronic renal failure, Trace Elements Med. 2: 44.

    Google Scholar 

  87. Kesteloo, H., Reclandt, J., Willems, J., Claes, S. H., and Joossens, J. V., 1968, An inquiry into the role of cobalt in the heart disease of chronic beer drinkers, Circulation 37: 854.

    Google Scholar 

  88. Kallistratos, G., Evangelou, A., Seferiadis, K., Vezyraki, P., and Barboutis, K., 1985, Selenium and hemodialysis: Serum selenium levels in healthy persons, non-cancer and cancer patients with chronic renal failure, Nephron 41: 217.

    PubMed  CAS  Google Scholar 

  89. Vaziri, N. B., Said, H. M., Hollander, D., Barbari, A., Patel, N., Dang, D., and Karinger, R., 1985, Impaired intestinal absorption of riboflavin in experimental uremia, Nephron 41: 26.

    PubMed  CAS  Google Scholar 

  90. DeBari, V. A., Baker, H., and Needle, M. A., 1984, Water soluble vitamins in granulocytes, erythrocytes and plasma obtained from chronic hemodialysis patients, Am. J. Clin. Nutr. 39: 410.

    PubMed  CAS  Google Scholar 

  91. Schaumburg, H., Kaplan, J., Windebank, A., Vick, N., Rasumus, S., Pleasure, D., and Brown, M. J., 1983, Sensory neuropathy from pyridoxine abuse, N. Engl. J. Med. 309: 445.

    PubMed  CAS  Google Scholar 

  92. Pru, C., Eaton, J., and Kjellstrand, C., 1985, Vitamin C intoxication and hyperoxalemia in chronic hemodialysis patients, Nephron 30: 112.

    Google Scholar 

  93. Vahlquist, A., Berne, B., Danielson, B. G., Grefberg, N., and Berne, C., 1985, Vitamin A losses during continuous ambulatory peritoneal dialysis, Nephron 41: 139.

    Google Scholar 

  94. Ono, K., Waki, Y., and Takeda, K., 1984, Hypervitaminosis A:A contributing factor to anemia in regular dialysis patients, Nephron 38: 44.

    PubMed  CAS  Google Scholar 

  95. Salyer, W. S. and Kern, D., 1973, Oxalosis as a complicadon of chronic renal failure, Kidney Int. 4: 61.

    PubMed  CAS  Google Scholar 

  96. Balcke, P, Schmidt, P., Zazgornik, J, Kopsa, H, and Deutsch, E, 1980, Secondary oxalosis in chronic renal insufficiency, N. Engl. J. Med. 303: 944.

    PubMed  CAS  Google Scholar 

  97. Boer, P, van Leersum, L, Hene, R. J, and Dorhout Meers, E. J, 1984, Plasma oxalate concentration in chronic renal disease, Am. J. Kidney Dis. 6:118.

    Google Scholar 

  98. Balcke, P, Schmidt, P, Zazgornik, J, Kopsa, H, and Haubenstock, A, 1984, Ascorbic acid aggravates secondary hyperoxalemia in patients on chronic hemodialysis, Ann. Intern. Med. 101: 344.

    PubMed  CAS  Google Scholar 

  99. Ramsay, A. G. and Reed, R. G, 1984, Oxalate removal by hemodialysis in endstage renal disease, Am. J. Kidney Dis. 6: 123.

    Google Scholar 

  100. Baer, A. and Ritzel, G. (eds), 1985, Xylitol and oxalate, Int. J. Vit. Nutr. Res. (Suppl. 28 ).

    Google Scholar 

  101. Schultze, G, Pommer, W, Offermann, G, Molzahn, M, Butz, M, Krauss, H. P, Lobeck, H, and Tschoepe, W, 1983, Acute renal failure and secondary renal oxalosis, Infusions Ther. 10: 322.

    CAS  Google Scholar 

  102. Balcke, P, Schmidt, P, Zazgornik, J, and Kopsa, H, 1981, Effect of vitamin B6 administration on elevated plasma oxalate level in hemodialysis patients, Eur. J. Clin. Invest. 12: 481.

    Google Scholar 

  103. O’Callaghan, J. W., Arbuckle, S. M., and Craswel, P. W, 1984, Rapid progression of oxalosis induced cardiomyopathy despite adaequate hemodialysis, Min. Electr. Metab., 10: 48.

    Google Scholar 

  104. Fayemi, A. O, Ali, M, and Braun, E. V, 1979, Oxalosis in hemodialysis patients, Arch. Pathol. Lab. Med. 103: 58.

    PubMed  CAS  Google Scholar 

  105. Barsotti, G, Cristofano, C, Morelli, E, Meola, M, Lupetti, S, and Giovanetti, S, 1984, Serum oxalic acid in uremia: Effect of a low-protein diet supplemented with essential amino acids and keto analogues, Nephron 38: 54.

    PubMed  CAS  Google Scholar 

  106. Ahmad, S. and Hatch, M, 1985, Hyperoxalemia in renal failure and the role of hemoperfusion and hemodialysis in primary oxalosis, Nephron 41: 235.

    PubMed  CAS  Google Scholar 

  107. Thompson, C. S. and Weinman, E. J, 1984, The significance of oxalate in renal failure, Am. J. Kidney Dis. 4: 97.

    PubMed  CAS  Google Scholar 

  108. Broyer, M., Guillot, M, Niaudet, P, Kleinknecht, C, Dartois, A. M, and Jean, G, 1983, Comparison of three low-nitrogen diets containing essential amino acids and their alpha analogues for severely uremic children, Kidney Int. 24(Suppl. l7):S-290.

    Google Scholar 

  109. Rizzoni, G, Basso, T, and Setari, M, 1984, Growth in children with chronic renal failure on conservative treatment, Kidney Int. 26: 52.

    PubMed  CAS  Google Scholar 

  110. Sigstroem, L, Attman, P-O, Jodal, U, and Odenman, I, 1984, Growth during treatment with low-protein diet in children with renal failure, Clin. Nephrol. 21: 152.

    Google Scholar 

  111. Kobayashi, N, Okubo, M, Marumo, F, Uchida, H, Endo, T, and Nakamura, H, 1983, De novo development of hypercholesterinemia and elevated high density lipoprotein cholesterol: Apoprotein A-1 ratio in patients with chronic renal failure following kidney transplantation, Nephron 35:231. ron 35: 231.

    Google Scholar 

  112. Goldstein, S., Duhamel, G., Laudat, M. H., Berthelier, M., Herry, C., Tete, M. J., and Broyer, M., 1984, Plasma lipids, lipoproteins and apolipoproteins A I, A II and B in renal, transplanted children: What risk for accelerated atherosclerosis, Nephron 38: 87.

    PubMed  CAS  Google Scholar 

  113. Shen, S. Y., Lukens, C. W., Alongi, S. V., Sfeir, R. E., Dagher, F. J., and Sadler, J. H., 1983, Patient profile and effect of dietary therapy on posttransplant hyperlipidemia, Kidney Int. 24(Suppl. 16):S-147.

    Google Scholar 

  114. Cogan, M. G., Sargent, J. A., Yarbrough, S. G., Vincenti, F., and Ahmen, W. J., 1981, Prevention of prednisone-induced negative nitrogen balance, Ann. Intern. Med. 95: 158.

    PubMed  CAS  Google Scholar 

  115. Steinmuller, D. R., Richards, C., Novick, A., Braun, W., and Nakamoto, S., 1983, Protein catabolic rate post transplant, Dialysis Transplant. 12: 504.

    Google Scholar 

  116. Hoy, W. E., Sargent, J. A., Freeman, R. B., Pabico, R. C., McKenna, B. A., and Sterling, W. A., 1984, A computer-aided prospective study of protein catabolic rate and nitrogen balance after renal transplant, Kidney Int. 25.-343A.

    Google Scholar 

  117. Whittier, F. C., Evans, D. H., Dutton, S., Ross, G., Luger, A., Nolph, K., Bauer, J. H., Brooks, C. S., and Moore, H., 1985, Nutrition in renal transplanatation, Am. J. Kidney Dis. 6: 405.

    PubMed  CAS  Google Scholar 

  118. Coggins, C. H., 1982, Management of nephrotic syndrome, in: Contemporary Issues in Nephrology, Nephrotic Syndrome, Volume 9 ( B. M. Brenner and J. H. Stein, eds.), Churchill Livingstone, New York, p. 282.

    Google Scholar 

  119. Manos, J., Harrison, A., Jones, M., Adams, P. H., and Mallick, N. P., 1983, Protein/calorie balance in nephrotic syndrome, Kidney Int. 24 (Suppl. 16): 349.

    Google Scholar 

  120. Muls, E., Rosseneu, M., Daneels, R., Schurges, M., and Boelaert, J., 1985, Lipoprotein distribution and composition in the human nephrotic syndrome, Atherosclerosis 54: 225.

    PubMed  CAS  Google Scholar 

  121. Appel, G. B., Blum, C. B., Chien, S., Kunis, C. L., and Appel, A. S., 1985, The hyperlipidemia of nephrotic syndrome, N. Engl. J. Med. 312: 1544.

    PubMed  CAS  Google Scholar 

  122. Sasaki, J., Hara, F., Motooka, T., Naito, S., and Arakawa, K., 1985, Nephrotic syndrome associated with hyper-high-density lipoproteinemia poteintiated by prednisolone therapy, Nephron 41: 110.

    PubMed  CAS  Google Scholar 

  123. Sokolovskaya, I. V. and Nikiforava, N. V., 1984, High density lipoprotein cholesterol in patients with untreated and treated nephrotic syndrome, Nephron 37: 49.

    PubMed  CAS  Google Scholar 

  124. Yedgar, S., Eilman, O., and Shafrir, E., 1985, Regulation of plasma lipid levels by plasma viscosity in nephrotic rats, Am. J. Physiol. 248: E10.

    PubMed  CAS  Google Scholar 

  125. Chan, M. K., Persaud, J., Varghese, Z., and Moorehead, J. F., 1984, Postheparin hepatic and lipoprotein lipase activities in nephrotic syndrome, Aust. NZ J. Med. 14: 841.

    CAS  Google Scholar 

  126. Bridgeman, J. F., Rosen, S. M., and Thorp, J. M., 1972, Complications during clofibrate treatment of nephrotic syndrome hyperlipoproteinemia, Lancet 2: 506.

    Google Scholar 

  127. Wass, V. J., Jarrett, R. J., Chilvers, C., and Cameron, J. S., 1979, Does the nephrotic syndrome increase the risk of cardiovascular disease? Lancet 2: 664.

    PubMed  CAS  Google Scholar 

  128. Shear, L, 1967, Internal redistribution of tissue protein synthesis in uremia, J. Clin. Invest. 48: 1252.

    Google Scholar 

  129. Clark, A. S. and Mitch, W. E, 1983, Muscle protein turnover and glucose uptake in acutely uremic rats, J. Clin. Invest. 72: 836.

    PubMed  CAS  Google Scholar 

  130. Horl, W. H., Stepinski, J., Schaefer, R. M., Warner, C, and Heidland, A., 1983, Role of proteases in hypercatabolic patients with renal failure, Kidney Int. 29(Suppl. 16):S-37.

    Google Scholar 

  131. Feinstein, E. I., 1985, Parenteral nutrition in acute renal failure, Am. J. Nephrol. 5: 145.

    PubMed  CAS  Google Scholar 

  132. Pils, P, Jettmar, W, Adamiker, D, and Tragi, K-H, 1981, Insulin and in vitro protein synthesis of liver and skeletal muscle ribosomes in experimental acute uremia, Horm. Metab. Res. 13: 89.

    PubMed  CAS  Google Scholar 

  133. Frohlich, J, Schoelmerich, J, Hoppe-Seyler, G, Maier, K. P, Talke, Schollmeyer, P, and Gerok, W. E, 1977, The effect of acute uremia on gluconeogenesis in isolated perfused rat liver, Eur. J. Clin. Invest. 7: 261.

    PubMed  CAS  Google Scholar 

  134. Druml, W, Buerger, U, Kleinberger, G, Lenz, K, and Laggner, A., 1986, Amino acid elimination in acute renal failure, Nephron 42: 62.

    PubMed  CAS  Google Scholar 

  135. May, R. C., Clark, A. S., Goher, M. A, and Mitch, W. E, 1985, Specific defects in insulin-mediated muscle metabolism in acute uremia, Kidney Int. 28: 490.

    PubMed  CAS  Google Scholar 

  136. Clark, A. S., Kelly, R. A, and Mitch, W. E, 1985, Systemic response to thermal injury in rats, J. Clin. Invest. 74: 888.

    Google Scholar 

  137. Druml, W, Laggner, A, Widhalm, K, Kleinberger, G., and Lenz, K, 1983, Lipid metabolism in acute renal failure, Kidney Int. 24(Suppl. 16):S-139.

    Google Scholar 

  138. Hohenegger, M. and Schuh, H, 1984, Triacylglycerol secretion and fatty acid synthesis by the liver in acute uremic rats, Exp. Pathol. 25: 89.

    PubMed  CAS  Google Scholar 

  139. Gottlob, R, Srour, A. N, Echsel, H, Molinari, E, Sogukoglu, T, Saghir, F., and Hohenegger, M., 1985, Increased serum triacylglycerol and cholesterol binding reserve in acute uremic rats, Exp. Pathol. 27: 249.

    PubMed  CAS  Google Scholar 

  140. Toback, F. G., Dodd, R. C., Mayer, E. R., and Havener, J. L. J, 1983, Amino acid administration enhances renal protein metabolism after acute tubular necrosis, Nephron 33: 238.

    PubMed  CAS  Google Scholar 

  141. Zager, R. A, Johannes, G., Tuttle, S. E., and Sharma, H. M., 1983, Acute amino acid nephrotoxicity, J. Lab. Clin. Med. 101: 130.

    PubMed  CAS  Google Scholar 

  142. Zager, R. A. and Venkatachalam, M. A, 1983, Potentiation of ischemic renal injury by amino acid infusion, Kidney Int. 24: 620.

    PubMed  CAS  Google Scholar 

  143. Morgenson, C. E. and Soiling, K, 1977, Studies on renal tubular protein reabsorption: Partial and near complete inhibition by certain amino acids, Scand. J. Clin. Lab. Invest. 37: 477.

    Google Scholar 

  144. Messner, G, Oberleithner, H, and Lang, F, 1985, The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney, Pflüg. Arch. 404: 138.

    CAS  Google Scholar 

  145. Visek, W. J, 1984, An update of concepts of essential amino acids, Annu. Rev. Nutr. 4: 137.

    PubMed  CAS  Google Scholar 

  146. Grazer, R. E, Sutton, J. M, Friedstrom, S, and McBarron, F. D, 1984, Hyperammoniemic encephalopathy due to essential amino acid hyperalimentation, Arch Intern. Med. 144: 2278.

    PubMed  CAS  Google Scholar 

  147. Barbul, A., Wasserkrug, H. L., Penberthy, L. T., Yoshimura, N. N., Tao, R. C., and Efron, G., 1984, Optimal levels of arginine in maintenance intravenous hyperalimentation, J. Parent. Nutr. 8: 281.

    CAS  Google Scholar 

  148. Yu, Y. M., Yang, R. B., Matthews, D. E., Wen, Z. M., Burke, J. F., Bier, D. M., and Young, V. R., 1985, Quantitative aspects of glycine and alanine nitrogen metabolism in postabsorptive young men. Effects of level of nitrogen and dispensible amino acid intake, Nutrition 115: 399.

    CAS  Google Scholar 

  149. Pennisi, A. J., Wang, M., and Kopple, J. D., 1978, Effects of protein and amino acid diets in chronically uremic and control rats, Kidney Int. 13: 472.

    PubMed  CAS  Google Scholar 

  150. Swendseid, M. E., Harris, C. L., and Tuttle, S. G., 1960, The effects of sources of nonessential nitrogen on nitrogen balance in young adults, J. Nutr. 71: 105.

    CAS  Google Scholar 

  151. Feinstein, E. I., Blumenkrantz, M. J., Healy, M., Koffler, A., Silberman, H., Massry, S. G., and Kopple, J. D., 1981, Clinical and metabolic response to parenteral nutrition in acute renal failure: Controlled double blind study, Medicine 60: 124.

    PubMed  CAS  Google Scholar 

  152. Mirtallo, J. M., Schneider, P. J., and Mavko, E., 1982, A comparison of essential and general amino acid infusions in nutritional support of patients with compromised renal function, J. Parent. Nutr. 6: 109.

    CAS  Google Scholar 

  153. Feinstein, E. I., Kopple, J. D., Silberman, H., and Massry, S. G., 1983, Total parenteral nutrition with high or low nitrogen intake in patients with acute renal failure, Kidney Int. 24(Suppl. 16):S-319.

    Google Scholar 

  154. Rose, W. C., 1979, Amino acid requirements of man, Fed. Proc. 8: 546.

    Google Scholar 

  155. Young, V. R. and Scrimshaw, N. S., 1978, Nutritional evaluation of proteins and protein requirements, in: Protein Resources and Technology ( M. Milner, N. S. Scrimshaw, and D. I. C. Wang, eds.), AVI, Westport, Connecticut, p. 136.

    Google Scholar 

  156. Mault, J. C., Bartlett, R. M., Dechert, R. E., Clark, S. F., and Swartz, R. O., 1983, Starvation: A major contribution to mortality in acute renal failure, Trans. Am. Soc. Artif. Int. Organs 29: 390.

    CAS  Google Scholar 

  157. Spreiter, S. C., Myers, B. D., and Swenson, R. J., 1980, Protein energy requirements in subjects with acute renal failure receiving intermittent hemodialysis, Am. J. Clin. Nutr. 33: 1432.

    Google Scholar 

  158. Druml, W., Widhalm, U., Laggner, A., Kleinberger, G., and Lenz, K., 1982, Fat elimination in acute renal failure, Clin. Nutr. 1: 109.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Publishing Corporation

About this chapter

Cite this chapter

Druml, W., Mitch, W.E. (1987). Nutrition in Renal Disease. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1859-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1859-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9037-7

  • Online ISBN: 978-1-4613-1859-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics