Skip to main content

Radiofrequency Spectroscopy of Rydberg Atoms

  • Chapter

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

One of the most compelling reasons for studying highly excited, or Rydberg, atoms is that in such atoms the Rydberg electron spends most of its time far from the ionic core. This one property has many interesting implications. For example, collisions of excited atoms with other neutral atoms and molecules may be treated as collisions with a separate ion and electron. From a spectroscopic point of view, the valence electron serves as a very gentle probe of the properties of the ionic core. Thus, one of the interesting features of Rydberg states of any atom but hydrogen is the comparison with hydrogenic behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Mayer and M. G. Mayer, Phys. Rev. 43, 605 (1933).

    Article  ADS  MATH  Google Scholar 

  2. B. Edlen, Handbuch der Physik ,Springer, Berlin (1964).

    Google Scholar 

  3. R. M. Sternheimer, J. E. Rodgers, T. Lee, and T. P. Das, Phys. Rev. A 14, 1595 (1976).

    Article  ADS  Google Scholar 

  4. D. Kleppner and T. W. Ducas, Bull. Am. Phys. Soc. 21, 600 (1976).

    Google Scholar 

  5. H. A. Bethe and E. A. Salpeter, Quantum Mechanics of One and Two Electron Atoms ,Academic, New York (1957).

    MATH  Google Scholar 

  6. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra ,Cambridge Univ. Press, Oxford (1935).

    Google Scholar 

  7. D. R. Bates and A. Damgaard, Phil. Trans. R. Soc. London 249, 101 (1949).

    ADS  Google Scholar 

  8. M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A 20, 2251 (1980).

    Article  ADS  Google Scholar 

  9. S. A. Bhatti, C. L. Cromer, and W. E. Cooke, Phys. Rev. A 24, 161 (1981).

    Article  ADS  Google Scholar 

  10. M. J. Seaton, Proc. Phys. Soc. London 88, 801 (1966).

    Article  ADS  Google Scholar 

  11. U. Fano, Phys. Rev. A 2, 353 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  12. T. M. Miller and B. Bederson, Advances in Atomic and Molecular Physics, Vol. 13, Academic, New York (1977).

    Google Scholar 

  13. R. R. Freeman and D. Kleppner, Phys. Rev. A 14, 1614 (1976).

    Article  ADS  Google Scholar 

  14. R. M. Sternheimer, Phys. Rev. A 1, 321 (1970).

    Article  ADS  Google Scholar 

  15. H. Elissa and U. Opik, Proc. Phys. Soc. London 92, 556 (1967).

    Article  ADS  Google Scholar 

  16. A. G. Vaidyanathan and P. Shorer, Phys. Rev. A 25, 3108 (1982).

    Article  ADS  Google Scholar 

  17. J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 551 (1933).

    Article  ADS  MATH  Google Scholar 

  18. A. Edmonds, Angular Momentum in Quantum Mechanics ,Princeton Univ. Press, Princeton, New Jersey (1960).

    Google Scholar 

  19. J. H. Van Vleck, Proc. Natl. Acad. Sci. USA 15, 757 (1929).

    ADS  Google Scholar 

  20. U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).

    Article  ADS  Google Scholar 

  21. L. Holmgren, I. Lindgren, J. Morrison, and J.-M. Martensson, Z. Phys. A 276, 179 (1976).

    Article  ADS  Google Scholar 

  22. E. Luc-Koenig, Phys. Rev. A 13, 2114 (1976).

    Article  ADS  Google Scholar 

  23. M. G. Littman, M. L. Zimmerman, T. W. Ducas, R. R. Freeman, and D. Kleppner, Phys. Rev. Lett. 36, 788 (1976).

    Article  ADS  Google Scholar 

  24. S. Haroche, M. Gross, and M. P. Silverman, Phys. Rev. Lett. 33, 1063 (1974).

    Article  ADS  Google Scholar 

  25. C. Fabre, M. Gross, and S. Haroche, Opt. Commun. 13, 393 (1975).

    Article  ADS  Google Scholar 

  26. T. F. Gallagher, L. M. Humphrey, R. M. Hill, and S. A. Edelstein, Phys. Rev. Lett. 37, 1465 (1976).

    Article  ADS  Google Scholar 

  27. G. Leuchs and H. Walther, Z. Phys. A 293, 93 (1979).

    Article  ADS  Google Scholar 

  28. T. H. Jeys, K. A. Smith, F. B. Dunning, and R. F. Stebbings, Phys. Rev. A 23, 3065 (1981).

    Article  ADS  Google Scholar 

  29. K. Fredriksson, H. Lundberg, and S. Svanberg, Phys. Rev. A 21, 241 (1980).

    Article  ADS  Google Scholar 

  30. Y. Kato and B. P. Stoicheff, J. Opt. Soc. Am. 66, 490 (1976).

    Article  ADS  Google Scholar 

  31. S. M. Curry, C. B. Collins, M. Y. Mirza, D. Popescu, and I. Popescu, Opt. Commun. 16, 251 (1976).

    Article  ADS  Google Scholar 

  32. N. F. Ramsey, Molecular Beams ,Oxford Univ. Press, London (1956).

    Google Scholar 

  33. W. E. Cooke, T. F. Gallagher, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 16, 1141 (1977).

    Article  ADS  Google Scholar 

  34. T. F. Gallagher, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 13, 1448 (1975).

    Article  ADS  Google Scholar 

  35. T. F. Gallagher, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 14, 744 (1976).

    Article  ADS  Google Scholar 

  36. T. F. Gallagher, W. E. Cooke, S. A. Edelstein, and R. M. Hill, Phys. Rev. A 16, 273 (1977).

    Article  ADS  Google Scholar 

  37. G. A. Ruff, K. A. Safinya, and T. F. Gallagher, Phys. Rev. A 22, 183 (1980).

    Article  ADS  Google Scholar 

  38. A. Lindgard and S. E. Nielsen, At. Data Nucl. Data Tables 19, 534 (1977).

    Article  ADS  Google Scholar 

  39. T. F. Gallagher, L. M. Humphrey, R. M. Hill, W. E. Cooke, and S. A. Edelstein, Phys. Rev. A 15, 1937 (1977).

    Article  ADS  Google Scholar 

  40. C. Fabre, P. Goy, and S. Haroche, J. Phys. B 10, L183 (1977).

    Article  ADS  Google Scholar 

  41. C. Fabre, S. Haroche, and P. Goy, Phys. Rev. A 18, 229 (1978).

    Article  ADS  Google Scholar 

  42. P. Goy, C. Fabre, M. Gross, and S. Haroche, J. Phys. B 13, L83 (1980).

    Article  ADS  Google Scholar 

  43. W. E. Cooke, T. F. Gallagher, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 16, 2473 (1977).

    Article  ADS  Google Scholar 

  44. T. F. Gallagher and W. E. Cooke, Phys. Rev. A 18, 2510 (1978).

    Article  ADS  Google Scholar 

  45. T. F. Gallagher, L. M. Humphrey, W. E. Cooke, R. M. Hill, and S. A. Edelstein, Phys. Rev. A 16, 1098 (1977).

    Article  ADS  Google Scholar 

  46. T. F. Gallagher, B. E. Perry, K. A. Safinya, and W. Sandner, Phys. Rev. A 24, 3249 (1981).

    Article  ADS  Google Scholar 

  47. T. F. Gallagher, W. Sandner, and K. A. Safinya, Phys. Rev. A 23, 2969 (1981).

    Article  ADS  Google Scholar 

  48. T. F. Gallagher, R. Kachru, and N. H. Tran, Phys. Rev. A 26, 2611 (1982).

    Article  ADS  Google Scholar 

  49. A. G. Vaidyanathan, W. P. Spencer, J. R. Rubbmark, H. Kuiper, C. Fabre, D. Kleppner, and T. W. Ducas, Phys. Rev. A 26, 3346 (1982).

    Article  ADS  Google Scholar 

  50. K. A. Safinya, T. F. Gallagher, and W. Sandner, Phys. Rev. A 22, 2672 (1980).

    Article  ADS  Google Scholar 

  51. E. J. Beiting, G. F. Hildebrandt, F. G. Kellert, G. W. Foltz, K. A. Smith, F. B. Dunning, and R. F. Stebbings, J. Chem. Phys. 70, 3553 (1979).

    Article  ADS  Google Scholar 

  52. T. F. Gallagher and W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979).

    Article  ADS  Google Scholar 

  53. W. E. Cooke and T. F. Gallagher, Phys. Rev. A 21, 588 (1980).

    Article  ADS  Google Scholar 

  54. K. A. Safinya, private communication.

    Google Scholar 

  55. W. E. Cooke, T. F. Gallagher, S. A. Edelstein, and R. M. Hill, Phys. Rev. Lett. 40, 178 (1978).

    Article  ADS  Google Scholar 

  56. W. E. Cooke and T. F. Gallagher, Opt. Lett. 4, 173 (1979).

    Article  ADS  Google Scholar 

  57. H. D. Cohen, J. Chem. Phys. 43, 3558 (1966).

    Article  ADS  Google Scholar 

  58. J. Lahiri and A. Mukherji, Phys. Rev. 141, 428 (1966).

    Article  ADS  Google Scholar 

  59. J. Lahiri and A. Mukherji, Phys. Rev. 153, 386 (1967).

    Article  ADS  Google Scholar 

  60. J. Heinrichs, J. Chem. Phys. 52, 6316 (1970).

    Article  ADS  Google Scholar 

  61. T. F. Gallagher and W. E. Cooke, Phys. Rev. A 19, 820 (1979).

    Article  ADS  Google Scholar 

  62. T. F. Gallagher and W. E. Cooke, Appl. Phys. Lett. 34, 369 (1979).

    Article  ADS  Google Scholar 

  63. H. Figger, G. Leuchs, R. Straubinger, and H. Walther, Opt. Commun. 33, 37 (1980).

    Article  ADS  Google Scholar 

  64. T. W. Ducas, W. P. Spencer, A. G. Vaidyanathan, W. H. Hamilton, and D. Kleppner, Appl. Phys. Lett. 35, 382 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gallagher, T.F. (1987). Radiofrequency Spectroscopy of Rydberg Atoms. In: Beyer, H.J., Kleinpoppen, H. (eds) Progress in Atomic Spectroscopy. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1857-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1857-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9036-0

  • Online ISBN: 978-1-4613-1857-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics