Skip to main content

Polarization Correlation in the Two-Photon Decay of Atoms

  • Chapter

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Interest in the polarization correlation of photons goes back to the early measurements(1) of the linear polarization correlation of the two photons produced in the annihilation of para-positronium which were carried out as a result of a suggestion by Wheeler(2) that these photons, when detected, have orthogonal polarizations. Yang(3) subsequently pointed out that such measurements are capable of giving information on the parity state of nuclear particles that decay into two photons. In addition, the polarization correlation observed in the two-photon decay of atoms is considered to be one of the few phenomena where semiclassical theories of radiation are inadequate(4,5) and it is necessary to invoke a full quantum theory of radiation. The effect has also been used to demonstrate the phenomenon of quantum interference.(6)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Wu and I. Shaknov, Phys. Rev. 77, 136 (1950).

    Article  ADS  Google Scholar 

  2. J. A. Wheeler, Ann. N.Y. Acad. Sci. 48, 219 (1946).

    Article  ADS  Google Scholar 

  3. C. N. Yang, Phys. Rev. 77, 242 (1949).

    Article  ADS  Google Scholar 

  4. J. F. Clauser, Phys. Rev. A 6, 49 (1972).

    Article  ADS  Google Scholar 

  5. L. Mandel, in Progress in Optics (edited by E. Wolf), Vol. 13, pp. 27–68, North-Holland, Amsterdam (1976).

    Google Scholar 

  6. A. Aspect, J. Dalibard, P. Grangier, and G. Roger, Opt. Commun. 49, 429 (1984).

    Article  ADS  Google Scholar 

  7. D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, New Jersey (1951).

    Google Scholar 

  8. D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  10. J. S. Bell, Physics 1, 195 (1964).

    Google Scholar 

  11. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

    Article  ADS  Google Scholar 

  12. J. F. Clauser and M. A. Home, Phys. Rev. D 10, 526 (1974).

    Article  ADS  Google Scholar 

  13. J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).

    Article  ADS  Google Scholar 

  14. F. M. Pipkin, in Advances in Atomic and Molecular Physics (edited by D. R. Bates and B. Bederson), Vol. 14, pp. 281–340, Academic, New York (1978).

    Google Scholar 

  15. A. Aspect, in The Wave-Particle Dualism (edited by S. Diner, D. Fargue, G. Lochak, and F. Selleri), pp. 377-390, D. Reidel, Dordrecht (1984).

    Google Scholar 

  16. A. Aspect, “Trois tests expérimentaux des inégalités de Bell par mesure de correlation de polarisation de photons”, Thèse, Université de Paris-Sud, Centre d’Orsay, Paris, France (1983).

    Google Scholar 

  17. J. S. Bell, in Proceedings of the International School of Physics “Enrico Fermi”, Course 1L (edited by B. d’Espagnat), pp. 171–181, Academic, New York (1971).

    Google Scholar 

  18. S. J. Freedman, Ph.D. thesis, University of California, Berkeley (1972).

    Google Scholar 

  19. E. Schrödinger, Proc. Cambridge Phil. Soc. 31, 555 (1935).

    Article  ADS  Google Scholar 

  20. W. H. Furry, Phys. Rev. 49, 393 (1936).

    Article  ADS  MATH  Google Scholar 

  21. F. Selleri and G. Tarozzi, Riv. Nuovo Cimento 4, 1 (1980).

    Google Scholar 

  22. C. A. Kocher and E. D. Commins, Phys. Rev. Lett. 18, 575 (1967).

    Article  ADS  Google Scholar 

  23. S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).

    Article  ADS  Google Scholar 

  24. R. A. Holt and F. M. Pipkin, Harvard University preprint (1974); see also Ref. 14.

    Google Scholar 

  25. J. F. Clauser, Phys. Rev. Lett. 36, 1223 (1976).

    Article  ADS  Google Scholar 

  26. J. F. Clauser, Nuovo Cimento B 33, 740 (1976).

    Article  ADS  Google Scholar 

  27. E. S. Fry and R. C. Thompson, Phys. Rev. Lett. 37, 465 (1976).

    Article  ADS  Google Scholar 

  28. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).

    Article  ADS  Google Scholar 

  29. A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

    Article  ADS  Google Scholar 

  30. F. Falciglia, L. Fornari, A. Garuccio, G. Iaci, and L. Pappalardo, in The Wave-Particle Dualism (edited by S. Diner, G. Lochak, and F. Selleri), pp. 397–412, D. Reidel, Dordrecht (1984).

    Google Scholar 

  31. A. Aspect, Phys. Rev. D 14, 1944 (1976).

    Article  ADS  Google Scholar 

  32. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  33. T. W. Marshall, E. Santos, and F. Selleri, Lett. Nuovo Cimento 38, 417 (1983).

    Article  Google Scholar 

  34. F. Selleri, Lett. Nuovo Cimento 39, 252 (1984).

    Article  Google Scholar 

  35. S. Pascazio, Nuovo Cimento D 5, 23 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Aspect and P. Grangier, Lett. Nuovo Cimento 43, 345 (1985).

    Article  Google Scholar 

  37. W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790 (1985).

    Article  ADS  Google Scholar 

  38. A. J. Duncan, W. Perrie, H. J. Beyer, and H. Kleinpoppen, in Book of Abstracts, Second European Conference on Atomic and Molecular Physics (edited by A. E. de Vries and M. J. van der Wiel), p. 116, Free University, Amsterdam, The Netherlands, April 15–19 (1985).

    Google Scholar 

  39. T. W. Marshall, E. Santos, and F. Selleri, Phys. Lett 98A, 5 (1983).

    ADS  Google Scholar 

  40. T. W. Marshall, Phys. Lett. 99A, 163 (1983).

    ADS  Google Scholar 

  41. T. W. Marshall, Phys. Lett. 100A, 225 (1984).

    ADS  Google Scholar 

  42. A. Garuccio and F. Selleri, Phys. Lett. 103A, 99 (1984).

    MathSciNet  ADS  Google Scholar 

  43. T. W. Marshall and E. Santos, Phys. Lett. 107A, 164 (1985).

    MathSciNet  ADS  Google Scholar 

  44. T. K. Lo and A. Shimony, Phys. Rev. A 23, 3003 (1981).

    Article  ADS  Google Scholar 

  45. F. Selleri, Phys. Lett. 108A, 197 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Duncan, A.J. (1987). Polarization Correlation in the Two-Photon Decay of Atoms. In: Beyer, H.J., Kleinpoppen, H. (eds) Progress in Atomic Spectroscopy. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1857-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1857-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9036-0

  • Online ISBN: 978-1-4613-1857-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics