Advertisement

Arginine Vasopressin

  • C. R. Kannan
Part of the Clinical Surveys in Endocrinology book series (CSED, volume 1)

Abstract

Arginine vasopressin (AVP) is the antidiuretic principle secreted by the hypothalamus and stored in the posterior pituitary. The control of AVP secretion and its role in regulating water balance form the basis of this discussion.

Keywords

Arginine Vasopressin Left Atrial Pressure Vasopressin Release Magnocellular Neuron Left Atrial Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sachs H, Portanova R, Haller EW, et al: Cellular processes concerned with vasopressin biosynthesis, storage, and release. In Stutinsky F (ed): Neurosecretion. Fourth International Symposium on Neurosecretion. Springer-Verlag, Berlin, 1967, p. 146.Google Scholar
  2. 2.
    Sachs H: Biosynthesis and release of vasopressin. Am J Med 42:687, 1967.PubMedCrossRefGoogle Scholar
  3. 3.
    Sachs H, Goodman R, Osinchak J, et al: Supraoptic neurosecretory neurons of the guinea pig in organ culture. Biosynthesis of vasopressin and neurophysin. Proc Natl Acad Sci USA 68:2782, 1971.PubMedCrossRefGoogle Scholar
  4. 4.
    Buford GD, Jones CW, Pickering BT: Tentative identification of a vasopressin-neurophysin and an oxytocin-neurophysin in the rat. Biochem J 124:809, 1971.Google Scholar
  5. 5.
    Cheng KW, Friesen HG: Physiological factors regulating secretion of neurophysin. Metabolism 19:876, 1970.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng KW, Friesen HG: A radioimmunoassay for vasopressin binding protein, neurophysin. Endocrinology 88:608, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Zimmerman EA, Robinson AG: Hypothalamic neurons secreting vasopressin and neurophysin. Kidney Int 10:12, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Zimmerman EA: Localization of hypothalamic hormones by immunocytochemical techniques. In Martini L, Ganong WF (eds): Frontiers in Neuroendocrinology. Vol. 4. Raven, New York, 1976.Google Scholar
  9. 9.
    Sunde DA, Sokol HW: Quantification of rat neurophysins by polyacrylamide gel electrophoresis: Application to the rat with hereditary hypothalamic diabetes insipidus. Ann NY Acad Sci 248:345, 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Nagasawa J, Douglas WW, Schultz RA: Ultrastructural evidence of secretion by exocytosis and of “synaptic vesicle” formation in posterior pituitary gland. Nature (Lond) 227:407, 1970.CrossRefGoogle Scholar
  11. 11.
    Nagasawa J, Douglas WW, Schultz RA: Micropinocytotic origin of coated and smooth microvesicles (“synaptic vesicles”) in neurosecretory terminals of posterior pituitary glands demonstrated by incorporation of horseradish peroxidase. Nature (Lond) 232:341, 1971.CrossRefGoogle Scholar
  12. 12.
    Douglas WW, Nagasawa J, Schultz RA: Coated micro vesicles in neurosecretory terminals of posterior pituitary glands shed their coats to become smooth “synaptic” vesicles. Nature (Lond) 232:340, 1971.CrossRefGoogle Scholar
  13. 13.
    Douglas WW, Poisner AM: Stimulus-secretion coupling in a neurosecretory organ. The role of calcium in the release of vasopressin from the neurohypophysis. J Physiol (Lond) 172:1, 1964.Google Scholar
  14. 14.
    Sachs H, Share L, Osinchak J, et al: Capacity of the neurohypophysis to release vasopressin. Endocrinology 81:755, 1967.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayward JN: Neural control of the posterior pituitary. Annu Rev Physiol 37:191, 1975.PubMedCrossRefGoogle Scholar
  16. 16.
    Verney EB: The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond 135:25, 1947.PubMedCrossRefGoogle Scholar
  17. 17.
    Thrasher TN: Osmoreceptor mediation of thirst and vasopressin secretion in the dog. Fed Proc 41:2528, 1982.PubMedGoogle Scholar
  18. 18.
    McKinley MJ, Denton DA, Weisinger RS: Sensors for antidiuresis and thirst-osmoreceptors or CSF sodium detectors? Brain Res 141:89, 1978.PubMedCrossRefGoogle Scholar
  19. 19.
    Andersson B, Olsson K: Evidence for periventricular sodium-sensitive receptors of importance in the regulation of ADH secretion. In Moses AM, Sharle L (eds): Neurohypophysis. Karger, Basel, 1977, p. 118.Google Scholar
  20. 20.
    Thrasher TN, Brown CJ, Keil LC, et al: Thirst and vasopressin release in the dog: An osmoreceptor or sodium receptor mechanism? Am J Physiol 238:R333, 1980.PubMedGoogle Scholar
  21. 21.
    Segar WE, Moore WW: The regulation of antidiuretic hormone release in man. I. Effects of change in position and ambient temperature on blood ADH levels. J Clin Invest 47:2143, 1968.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunn FL, Brennan JT, Nelson AE, et al: The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52:3212, 1973.PubMedCrossRefGoogle Scholar
  23. 23.
    Robertson GL, Shelton RL, Athar S: The osmoregulation of vasopressin. Kidney Int 10:25, 1976.PubMedCrossRefGoogle Scholar
  24. 24.
    Culpepper RM, Herbert SC, Andreoli TE: Nephrogenic diabetes insipidus. In Stanbury JB, Wyngarden JB, Fredrickson DS, et al. (eds): The Metabolic Basis of Inherited Disease. 5th Ed. McGraw-Hill, New York, 1983, p. 1867.Google Scholar
  25. 25.
    Moore WW: Antidiuretic hormone levels in normal subjects. Fed Proc 30:1387, 1971.PubMedGoogle Scholar
  26. 26.
    Gauer OH, Henry JP, Sieker HO, et al: The effect of negative pressure breathing on urine flow, J Clin Invest 33:287, 1954.PubMedCrossRefGoogle Scholar
  27. 27.
    White WA, Bergland RM: Experimental inappropriate ADH secretion caused by positive pressure respirators. J Neurol Surg 36:608, 1972.Google Scholar
  28. 28.
    Murdaugh HV, Sieker HO, Manfredi F: Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J Clin Invest 38:834, 1959.PubMedCrossRefGoogle Scholar
  29. 29.
    Weinstein H, Berne RM, Sachs H: Vasopressin in blood: Effect of hemorrhage. Endocrinology 66:712, 1960.PubMedCrossRefGoogle Scholar
  30. 30.
    Reid IA: Actions of angiotensin II on the brain: Mechanisms and physiologic role. Am J Physiol 246:F533, 1984.PubMedGoogle Scholar
  31. 31.
    Ramsay DJ: Effects of circulating angiotensin II on the brain. In Ganong WF, Martini L (eds): Frontiers in Neuroendocrinology. Raven, New York, 1982, p. 263.Google Scholar
  32. 32.
    Reid IA, Brooks VL, Rudolph CD, et al: Analysis of the actions of angiotensin on the central nervous system of conscious dogs. Am J Physiol 243:R82, 1982.PubMedGoogle Scholar
  33. 33.
    Mouw D, Bonjour J, Malvin RL, et al: Central action of angiotensin in stimulating ADH release. Am J Physiol 220:239, 1971.PubMedGoogle Scholar
  34. 34.
    Szczepanska-Sadowska E: Plasma ADH increase and thirst suppression elicited by preoptic heating in the dog. Am J Physiol 226:155, 1974.PubMedGoogle Scholar
  35. 35.
    Berl T, Cadnapaphornchi P, Harbottoe JA, et al: Mechanism of stimulation of vasopressin release during beta adrenergic stimulation with isoproterenol. J Clin Invest 53:857, 1974.PubMedCrossRefGoogle Scholar
  36. 36.
    Berl T, Cadnapaphornchi P, Harbottoe JA, et al: Mechanism of suppression of vasopressin during alpha adrenergic stimulation with norepinephrine. J Clin Invest 53:219, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Schrier RW, Liberman R, Ufferman RC: Mechanism of antidiuretic effect of beta-adrenergic stimulation. J Clin Invest 51:97, 1972.PubMedCrossRefGoogle Scholar
  38. 38.
    Klein LA, Lieberman B, Laks M, et al: Interrelated effects of antidiuretic hormone and adrenergic drugs on water metabolism. Am J Physiol 221:1657, 1971.PubMedGoogle Scholar
  39. 39.
    Epstein AN, Fitzsimons JT, Roots BJ: Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210:457, 1970.Google Scholar
  40. 40.
    Fitzsimons JT: The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat’s diencephalon. J Physiol (Lond) 214:295, 1971.Google Scholar
  41. 41.
    Severs WB, Severs AED: Effects of angiotensin on the central nervous system. Pharmacol Rev 415:448, 1973.Google Scholar
  42. 42.
    Leksell LG: Influence of PGE on cerebral mechanisms involved in control of fluid balance. Acta Physiol Scand 98:85, 1976.PubMedCrossRefGoogle Scholar
  43. 43.
    Andersson B, Leksell LG: Effects on fluid balance of intraventricular infusions of prostaglandin Ei. Acta Physiol Scand 93:286, 1975.PubMedCrossRefGoogle Scholar
  44. 44.
    Yamamoto M, Share L, Shade RE: Vasopressin release during ventriculocisternal perfusion with prostaglandin E2. J Endocrinol 71:325, 1976.PubMedCrossRefGoogle Scholar
  45. 45.
    Bauman G, Dingman JF: Distribution, blood transport and degradation of antidiuretic hormone in man. J Clin Invest 57:1109, 1976.CrossRefGoogle Scholar
  46. 46.
    Rector FC Jr: Renal concentrating mechanisms. In Andreoli TE, Grantham JJ, Rector FC Jr (eds): Disturbances in Body Fluid Osmolality. American Physiology Society, Bethesda, MD, 1977, p. 179.Google Scholar
  47. 47.
    Jamison RL, Maflly RH: The urinary concentrating mechanism. N Engl J Med 295:1059, 1976.PubMedCrossRefGoogle Scholar
  48. 48.
    Tisher CC: Anatomy of the kidney. In Brenner BM, Rector FC Jr (eds): The Kidney. WB Saunders, Philadelphia, 1976, p. 280.Google Scholar
  49. 49.
    Weitzman RE, Kleeman CR: The clinical physiology of water metabolism. Part II. Renal mechanisms for urinary concentration; diabetes insipidus. West J Med 131:486, 1979.PubMedGoogle Scholar
  50. 50.
    Kokko JP, Rector FC Jr: Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214, 1972.PubMedCrossRefGoogle Scholar
  51. 51.
    Stephenson JL: Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2:85, 1972.PubMedCrossRefGoogle Scholar
  52. 52.
    Stephenson JL: Concentrating engines and the kidney. I and II. Biophys J 13:512, 1973.PubMedCrossRefGoogle Scholar
  53. 53.
    Gellai M, Edwards BR, Valtin H: Urinary concentrating, ability during dehydration in the absence of vasopressin. Am J Physiol 237:F100, 1979.PubMedGoogle Scholar
  54. 54.
    Edwards BR, Gallai M, Valtin H: Concentration of urine in the absence of ADH with minimal or no decrease in GFR. Am J Physiol 239:F84, 1980.PubMedGoogle Scholar
  55. 55.
    Gennari FJ, Kassirer JP: Osmotic diuresis. N Engl J Med 291:714, 1974.PubMedCrossRefGoogle Scholar
  56. 56.
    Walter R, Clark WS, Mehta PK, et al: Conformational considerations of vasopressin as a guide to development of biological probes and therapeutic agents. In Andreoli TE, Grantham JJ, Rector FC Jr (eds): Disturbances in Body Fluid Osmolality. American Physiology Society, Bethesda, MD, 1977, p. 1.Google Scholar
  57. 57.
    Sawyer WH, Manning M: Effective antagonists of the antidiuretic action of vasopressin in rats. Ann NY Acad Sci 394:464, 1982.PubMedCrossRefGoogle Scholar
  58. 58.
    Jard S, Roy C, Barth T, et al: Antidiuretic hormone-sensitive kidney adenylate cyclase. Adv Cyclic Nucleotide Res 5:31, 1975.PubMedGoogle Scholar
  59. 59.
    Jard S, Bockaert J: Stimulus-response coupling in neurohypophyseal peptide target cells. Physiol Rev 55:489, 1975.PubMedGoogle Scholar
  60. 60.
    Dousa TP, Valtin H: Cellular actions of vasopressin in the mammalian kidney. Kidney Int 10:55, 1976.CrossRefGoogle Scholar
  61. 61.
    Andreoli TE, Schafer JA: Mass transport across cell membranes. The effects of antidiuretic hormone on water and solute flows in epithelia. In Knobil E, Sonnenschein RR, Edelman IS (eds): Annual Review of Physiology. Vol. 38, Annual Reviews, Palo Alto, CA, 1977, p. 451.Google Scholar
  62. 62.
    Taylor A: Role of microtubules and microfilaments in the action of vasopressin. In Andreoli TE, Grantham JJ, Rector FC Jr (eds): Disturbances in Body Fluid Osmolality. American Physiology Society, Bethesda, MD, 1977, p. 97.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • C. R. Kannan
    • 1
    • 2
  1. 1.Division of Endocrinology and Metabolism Department of MedicineCook County HospitalChicagoUSA
  2. 2.University of Illinois at ChicagoChicagoUSA

Personalised recommendations