Skip to main content

Chromatin Structure Near an Expressed Gene

  • Chapter

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

The DNA within eukaryotic nuclei is complexed with basic proteins called histones to form a compact structure. Although little is known about the way in which higher orders of compaction are achieved, the two lowest levels of DNA packing in chromatin are relatively well understood. The fundamental chromatin subunit is the nucleosome. The central portion of each nucleosome is the chromatosome, which contains 165 base pairs (bp) of DNA wrapped in two superhelical turns about an octamer of histones. Each chromatosome is connected to its neighbor by a segment of linker DNA, the length of which varies from about 10 to 80 bp. The next level of compaction requires that the lineas polynucleosome filament be folded to form a fiber 30 nm in diameter. Most evidence suggests that this is a solenoidal structure in which the filament is supercoiled to give a fiber with about six nucleosomes per turn (Finch and Klug, 1976; Felsenfeld and McGhee, 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berk, A. J., and Sharp, P. A., 1977, Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease digested hybrids, Cell 12:721–732.

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen, D. F., Wormington, W. M., and Brown, D. D. 1982, Stable transcription complexes of Xenopus 5S RNA genes: A means to maintain the differentiated state, Cell 28:413–421.

    Article  PubMed  CAS  Google Scholar 

  • Cantor, C. R., and Efstradiatis, A., 1984, Possible structure of homopurine homopyrimidine S1 hypersensitive sites, Nucleic Acids Res. 12:8059–8072.

    Article  PubMed  CAS  Google Scholar 

  • Charnay, P., Treisman, R., Mellon, P., Chao, M., Axel, R., and Maniatis, T., 1984, Differences in human α- and β-globin gene expression in mouse erythroleukemia cells: The role of intragenic sequences, Cell 38:251–263.

    Article  PubMed  CAS  Google Scholar 

  • Dierks, P., van Ooyen, A., Cochran, M. D., Dobkin, C., Reiser, J., and Weissman, C., 1983, Three regions upstream from the Cap site are required for efficient and accurate transcription of the rabbit beta-globin gene in mouse 3T6 cells, Cell 32:695–706.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, B. M., and Felsenfeld, G., 1984, Specific factor conferring nuclease hypersensitivity at the 5’ end of the chicken adult β-globin gene, Proc. Natl. Acad. Sci. U.S.A. 81:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, B. M., Lewis, C. D., and Felsenfeld, G., 1985, Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult β-globin gene: Nature of the binding domain, Cell 41:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld, G., and McGhee, J. D., 1986, Structure of the 30 nm chromatin fiber, Cell 44:375–377.

    Article  PubMed  CAS  Google Scholar 

  • Finch, J. T., and Klug, A., 1976, Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. U.S.A. 73:1897–1901.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, E. A. and Felsenfeld, G. 1986, A comparison of the folding of β-globin and ovalbumin gene-containing chromatin from chicken oviduct and erythrocytes, Biochemistry (in press).

    Google Scholar 

  • Hesse, J. E., Nickol, J. M., Lieber, M. R., and Felsenfeld, G., 1986, Regulated gene expression in transfected primary chicken erythrocytes, Proc. Natl. Acad. Sci. U.S.A. 83:4312–4316.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, P. D., and Felsenfeld, G., 1985, A method for mapping intranuclear protein- DNA interactions and its application to a nuclease hypersensitive site, Proc. Natl.Acad. Sci. U.S.A. 82:2296–2300.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T., Mills, F. C., Allan, J., and Gould, H., 1983, Selective unfolding of erythroid chromatin in the region of the active beta-globin gene, Nature (London) 306:709–712.

    Article  CAS  Google Scholar 

  • Kunkel, G. R., and Martinson, H. G., 1981, Nucleosomes will not form on double-stranded RNA or over poly(dA)•poly(dT) tracts in recombinant DNA, Nucleic Acids Res. 9:6869–6888.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, A., and Weintraub, H., 1982, An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin, Cell 29:609–622.

    Article  PubMed  CAS  Google Scholar 

  • Lyamichev,V. I., Mirkin, S. M., and Frank-Kamenetskii, M.D., 1986, Structures of homopurine-homopyrimidine tract in superhelical DNA, J. Biomol. Struct. Dynam. 3:667–669.

    CAS  Google Scholar 

  • McGhee, J. D., Wood, W. I., Dolan, M., Engel, J. D., and Felsenfeld,G., 1981, A 200 base pair region at the 5’ end of the chicken adult β-globin gene is accessible to nuclease digestion, Cell 27:45–55.

    Article  PubMed  CAS  Google Scholar 

  • McGhee, J. D., Nickol, J. M., Felsenfeld, G., and Rau, D. C., 1983, Higher order structure of chromatin: Orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length, Cell 33:831–841.

    Article  PubMed  CAS  Google Scholar 

  • Nickol, J. M., and Felsenfeld, G., 1983, DNA conformation at the 5’ end of the chicken adult β-globin gene, Cell 35:467–477.

    Article  PubMed  CAS  Google Scholar 

  • Pulleyblank, D. E., Haniford, D. B., and Morgan, A. R., 1985, A structural basis for S1 nuclease sensitivity of double-stranded DNA, Cell 42:271–280.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H., 1983, A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin, Cell 32:1191–1203.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science 193:848–856.

    Article  PubMed  CAS  Google Scholar 

  • Wood, W. I., and Felsenfeld, G., 1982, Chromatin structure of the chicken β-globin region: Sensitivity to DNase I, micrococcal nuclease, and DNase II, J. Biol. Chem. 257:7730–7736.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Felsenfeld, G. et al. (1987). Chromatin Structure Near an Expressed Gene. In: Poste, G., Crooke, S.T. (eds) New Frontiers in the Study of Gene Functions. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1845-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1845-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9030-8

  • Online ISBN: 978-1-4613-1845-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics