Skip to main content

Comparative Genetic Analysis of Homeobox Genes in Mouse and Man

  • Chapter
New Frontiers in the Study of Gene Functions

Abstract

Homeobox sequences in insects have been described as repetitive elements in homeotic genes (McGinnis et al., 1984a). They have also been found in other genes that have developmental functions. The homeobox sequences are conserved in many animal groups across the protostome and deuterostome lineages of evolutionary ascent. Highly conserved homeobox sequences have been described in numerous vertebrates, including amphibians and mammals (McGinnis et al., 1984b). We have been especially concerned with homeobox sequences in the mouse and in man (McGinnis et al., 1984c). It is now certain that the homeobox sequences code domains within functional genes in vertebrates, on the basis of their expression in polyadenylated RNA transcripts (Hart et al., 1985). Moreover, the tissue-specific expression and temporal patterns of expression are both consistent with a developmental role (Awgulewitsch et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awgulewitsch, A., Utset, M. F., Hart, C. P., McGinnis, W., and Ruddle, F. H., 1986, Spatial restriction in expression of a mouse homeobox locus within the central nervous system, Nature (London) 320:328–335.

    Article  CAS  Google Scholar 

  • Casey, G., Smith, R., McGillivray, D., Peters, G., and Dickson, C., 1986, Characterization and chromosome assignment of the human homolog of int-2, a potential proto-oncogene, Mol. Cell. Biol. 6:502–510.

    PubMed  CAS  Google Scholar 

  • Chambon, P., Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J., and Bonner, D., 1986, Steroid hormone receptor genes: Cloning, organization, and expression, ISCU Newsletter 4:246–249.

    CAS  Google Scholar 

  • De la Chapelle, A., 1985, Human gene mapping 8, Cytogenet. Cell Genet. 40(1-4):1–823.

    Article  PubMed  Google Scholar 

  • Desplan, C., Theis, J., and O’Farrell, P., 1985, The Drosophila developmental gene,engrailed, encodes a sequence-specific DNA binding activity, Nature (London) 318:630–635.

    Article  CAS  Google Scholar 

  • Green, M. C., 1981, Genetic Variants and Strains of the Laboratory Mouse ,Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Hart, C. P., Awgulewitsch, F., Fainsod, A., McGinnis, W., and Ruddle, F. H., 1985, Homeo-box gene complex on mouse chromosome 11: Molecular cloning, expression in embryogenesis and homology to a human homeo-box locus, Cell 43:9–18.

    Article  PubMed  CAS  Google Scholar 

  • Huebner, K., Isobe, M., Chao, M., Bothwell, M., Ross, A., Finan, J., Hoxie, J., Seghal, A., Buck, C. R., Lanahan, A., Nowell, P., Koprowski, H., and Croce, C., 1986, The nerve growth factor receptor gene is at human chromosome region 17q12-17q22, distal to the chromosome 17 breakpoint in acute leukemias, Proc. Natl. Acad. Sci. U.S.A. 83:1403–1407.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, J.-O., Downs, T., Beamer, W., and Frohman, L., 1986, Receptor-association resistance to growth hormone-releasing factor in dwarf “little” mice, Science 232:511–512.

    Article  PubMed  CAS  Google Scholar 

  • Joyner, A. L., Romberg, T., Coleman, K. G., Cox, D. R., and Martin, G. R., 1985a, Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene, Cell 43:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Joyner, A. L., Hauser, C., Kornberg, T., Tjian, R., and Martin, G., 1985b, Structure and expression of two classes of Mammalian homeo-box-containing genes, Cold Spring Harbor Symp. Quant. Biol. 50:291–300.

    PubMed  CAS  Google Scholar 

  • Killary, A., and Fournier, R., 1984, A genetic analysis of extinction: Trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells, Cell 38:523–534.

    Article  PubMed  CAS  Google Scholar 

  • Laughon, A., and Scott, M. P., 1984, Sequence of a Drosophila segmentation gene: Protein structure homology with DNA binding proteins, Nature (London) 310:25–31.

    Article  CAS  Google Scholar 

  • Lewis, E. B., 1985, Regulation of the genes of the bithorax complex in Drosophila ,in: Banbury Report 20: Genetic Manipulations of the Early mammalian Embryos (F. Costantini and R. Jaenisch, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 155–164.

    Google Scholar 

  • McGinnis, W., Levine, M., Hafen, E., Kuroiwa, A., and Gehring, W. J., 1984a, A conserved DNA sequence in homeotic genes of the Drosophila antennapedia and bithorax complexes, Nature (London) 308:428–433.

    Article  CAS  Google Scholar 

  • McGinnis, W., Garber, R. L., Witz, J., Kuroiwa, A., and Gehring, W. J., 1984b, A homologous protein-coding sequence in Drosophila homeotic genes and its conservation to other metazoans, Cell 37:408–412.

    Article  Google Scholar 

  • McGinnis, W., Hart, C. P., Gehring, W. J., and Ruddle, F. H., 1984c, Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila, Cell 38:675–680.

    Article  PubMed  CAS  Google Scholar 

  • Michael, S. K., Hilger, J., Kozak, C., Whitney, J. B. III, and Howard, E. F., 1986, Characterization and mapping of DNA sequence homologous to mouse Ulal snRNA: Localization on chromosome 11 near the Dlb-1 and Re loci, Somat. Cell Mol. Genet. 12(3):215–223.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R., Casey, G., Brookes, S., Dixon, M., Peters, G., and Dickson, C, 1986, Sequence, topography and protein coding potential of mouse int-2: A putative oncogene activated by mouse mammary tumor virus, Eur. Mol. Biol. Org. J. 5:919–924.

    CAS  Google Scholar 

  • Petit, C., Levilliers, J., Ott, M.-O., and Weiss, M., 1986, Tissue-specific expression of the rat albumin gene: Genetic control of its extinction in microcell hybrids, Proc. Natl. Acad. Sci. U.S.A. 83:2561–2565.

    Article  PubMed  CAS  Google Scholar 

  • Pravtcheva, D., Rabin, M., Bartolomei, M., Gorden, J., and Ruddle, F. H., 1986, Chromosomal assignment of the gene encoding the largest subunit of RNA polymerase II in the mouse, Somat. All. Mol. Genet. (in press).

    Google Scholar 

  • Rabin, M., Hart, C. P., Ferguson-Smith, A., McGinnis, W., Levine, M., and Ruddle, F. H., 1985, Two homeobox loci mapped in evolutionary related mouse human chromosomes, Nature (London) 314:175–178.

    Article  CAS  Google Scholar 

  • Rabin, M., Ferguson-Smith, A., Hart, C.P., and Ruddle, F. H., 1986, Cognate homeobox loci mapped on homologous human and mouse chromosomes, Proc. Natl. Acad. Sci. U.S.A. (in press).

    Google Scholar 

  • Rehfeld, J. F., 1981, Four basic characteristics of the gastrin-cholecystokinin system, Am. J. Physiol. 240:G255–G266.

    PubMed  CAS  Google Scholar 

  • Ruddle, F. H., Hart, C. P., Awgulewitsch, A., Fainsod, A., Utset, M., Dalton, D., Kerk, N., Rabin, M., Ferguson-Smith, A., Fienberg, A., and McGinnis, W., 1985a, Mammalian homeo box genes, Cold Spring Harbor Symp. Quant. Biol. 50:277–284.

    PubMed  CAS  Google Scholar 

  • Ruddle, F. H., Hart, C. P., and McGinnis, W., 1985b, Homeo-box sequences-relevant vertebrate developmental mechanisms, Banbury Report 20: Genetic Manipulations of the Early Mammalian Embryo (F. Costantini and R. Jaenisch, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 169–177.

    Google Scholar 

  • Shepherd, J. C. W., McGinnis, W., Carrasco, A. E., DeRobertis, E. M., and Gehring, W. J., 1984, Fly and frog homeo domains show homologies with yeast mating type regulatory proteins, Nature (London) 310:70–72.

    Article  CAS  Google Scholar 

  • Somssich, I., Spira, J., Hameister, H., and Klein, G., 1984, Correlation between tumorigenicity and banding patterns of chromosome 15 in murine T-cell leukemia cells and hybrids of normal and malignant cells, Chromosoma 91:39–45.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., Ikawa, S., Akiyama, T., Semba, K., Nomura, N., Miyajima, N., Saito, T., and Toyoshima, K., 1986, Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor, Nature (London) 319:230–231.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Ruddle, F.H., Hart, C.P., Rabin, M., Ferguson-Smith, A., Pravtcheva, D. (1987). Comparative Genetic Analysis of Homeobox Genes in Mouse and Man. In: Poste, G., Crooke, S.T. (eds) New Frontiers in the Study of Gene Functions. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1845-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1845-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9030-8

  • Online ISBN: 978-1-4613-1845-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics