Resonant Tunneling Through Quantized States in a-Si:H

  • Masataka Hirose
  • Yohji Ihara
  • Seiichi Miyazaki
Part of the Institute for Amorphous Studies Series book series (IASS)


Ultra-thin multilayer structures consisting of amorphous silicon (a-Si:H) and silicon-based materials such as amorphous silicon nitride (a-Si1−xN x:H), silicon carbide (a-Si1−xCx:H), or silicon germanium (a-Si1−xGex:H) have been extensively studied. The layer thickness can be controlled on an atomic scale and hence the optical and electrical properties have been interpreted by assuming the quantized states in the 1−7, conduction and valence bands of the potential well layers, as in the case of crystalline semiconductor superlattices. However, there has been a current question whether or not the quantum size effect is really existing in ultra-thin amorphous semiconductor multilayers. In this paper, we report on the resonant tunneling phenomena through a-Si3N4:H/a-Si:H/a-Si3N 4:H double barrier structures. This is a direct evidence of the quantization effect in an amorphous silicon well layer sandwiched with stoichiometric silicon nitride barriers.


Amorphous Silicon Resonant Tunneling Electron Effective Mass Double Barrier Silicon Germanium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Munekata and H. Kukimoto, Jpn. J. Appl. Phys. 22, L544 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    B. Abeles and T. Tiedje, Phys, Rev. Lett. 51, 2003 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    J. Kakalios, H. Fritzsche, N. Ibaraki and S.R. Ovshinsky, J. Non-Cryst. Solids 66, 339 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    M. Hirose and S. Miyazaki, ibid., 66, 327 (1984).Google Scholar
  5. 5.
    S. Miyazaki, N. Murayama, M. Hirose and M. Yamanishi, Technical Digest of the International PVSEC-1 (Kobe, 1984) p. 425.Google Scholar
  6. 6.
    T. Tiedje, B. Abeles, H. Deckman, P. Persans and C. Roxlo, J. Non-Cryst. Solids 77 & 78, 1031 (1985).Google Scholar
  7. 7.
    S. Miyazaki, N. Murayama and M. Hirose, ibid. 77 & 78, 1089 (1985).Google Scholar
  8. 8.
    S. Miyazaki, Y. Ihara and M. Hirose, Extended Abstracts of the 6th Intern. Conf. Solid State Devices and Materials (Tokyo, 1986), to be published.Google Scholar
  9. 9.
    H. Davis and H.H. Hosack, J. Appl. Phys. 34, 864 (1963).ADSCrossRefGoogle Scholar
  10. 10.
    W. E. Spear, J. Non-Cryst. Solids 59 & 60, 1 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Masataka Hirose
    • 1
  • Yohji Ihara
    • 1
  • Seiichi Miyazaki
    • 1
  1. 1.Department of Electrical EngineeringHiroshima UniversityHigashihiroshima 724Japan

Personalised recommendations