Skip to main content

Investigation of Medium Range Order by Photoemission, Reflectivity, Laser-Induced Crystallization Raman Spectroscopy in Amorphous GeSe2

  • Chapter
Disordered Semiconductors

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

It is very difficult to determine the structure of amorphous materials, since the long range order is completely destroyed, where the conventional crystallographic diffraction method becomes less powerful. In many cases, however, infrared1, Raman1 and Mossbauer2 spectroscopies, and electro-microscopy are considerably effective means to investigate the intermediate structure of glasses,3,4 while the X ray or neutron diffraction methods give important information among near neighbor atoms and some suggestions about medium range structures. Recent theoretical considerations relate glass forming tendencies and global profile of glass structures to the mean coordination number m. Phillips predicted that glass formation is easiest when the coordination number m = 2.4. 4,5 Thorpe6 discussed that the elastic percolation begins at near m = 2.4 in a covalent network glass, if we could sweep the mean coordination in some means. For several years, we7–12 have investigated composition and pressure dependence of the vibrational spectra in g-(Ge,Sn)(Se,S). We paid attention to the characteristic spectra of molecular clusters such as Ge(Se, or S)4/2, (Ge1-ySny)(Se, or S)4/2, Ge2Se6/2, Sen, S8, and Sn. The GeSe4/2 clusters in g-GeSe2 are highly strained even without external pressure. The strain is released with increasing selenium composition x, as is observed in the composition dependence of the A1 peak, and is relaxed at near xc=0.80, where m = 2.4. 10, 11Such critical behaviors were investigated in many situations in the glass system and the stability and the formation of the clusters were discussed.12, 13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Lucovsky and T. M. Hayes in “Amorphous Semiconductors,” M. H. Brodsky, ed,. Springer-Verlag (1979) p215.

    Google Scholar 

  2. P. Boolchand, “Physical Properties of Amorphous Materials.” David Adler, Brian B. Schwartz and Martin C. Steel, ed., Plenum Publishing Corporation, New York (1985).

    Google Scholar 

  3. J. C. Phillips, J. Non-Crystalline Solids 43: 37 (1981).

    Article  ADS  Google Scholar 

  4. H. Fritzsche, in “Fundamental Physics of Amorphous Semiconductors,” F. Yonezawa, ed., Springer-Verlag, New York (1981) p13.

    Google Scholar 

  5. J. C. Phillips, J. Non-Crystalline Solids 34:153 (1979).

    Article  ADS  Google Scholar 

  6. M. F. Thorp, J. Non-Crystalline Solid 57:355 (1983).

    Article  ADS  Google Scholar 

  7. K. Murase, K. Yakushiji and T. Fukunaga, J. Non-Crystalline Solids 59&60:855 (1983).

    Google Scholar 

  8. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi and I. Yunoki, J. Non-Crystalline Solids 59&60:883 (1983).

    Article  Google Scholar 

  9. K. Murase, T. Fukunaga, Y. Tanaka, K. Yakushiji and I. Yunoki, Physica 117B&118B:962 (1983).

    Google Scholar 

  10. K. Murase and T. Fukunaga,“Optical Effects in Amorphous Semiconductors,” P.C. Taylor and S. G. Bishop, ed., AIP Conf. Poc. No.120 (1984) p449.

    Google Scholar 

  11. K. Murase and T. Fukunaga, Proc. 17th Intern. Conf. Phys. Semiconductors, J. D. Chadi and W. A. Harrison, ed., Springer-Verlag, New York (1985) p943.

    Google Scholar 

  12. K. Murase and T. Fukunaga, Material Res. Soc. Symp. Proc. 61:101 (1986).

    Article  Google Scholar 

  13. W. Bresser, P. Boolchand and P. Surani, Phys. Rev. Letters 56:2493 (1986).

    Article  ADS  Google Scholar 

  14. K. Murase, K. Inoue and K. Kawamoto, Proc. 10th Intern. Conf. on Raman Spectroscopy, Eugene,Aug. 31-Sep. 5, 1986.

    Google Scholar 

  15. K. Inoue, T. Katayama, K. Kawamoto and K. Murase, Proc. 18th. Intern. Conf. Phys. Semiconductors, Stockholm, Aug. 11–15, 1986.

    Google Scholar 

  16. P. M. Brindenbaugh, G. P. Espinosa, J. E. Griffith, J. C. Phillips and J. P. Remeica, Phys Rev. B20:4H0 (1979).

    Google Scholar 

  17. R. J. Nemanich, F. L. Galeener, J. C. Mikkelson Jr. and G. A. N. Sinclain, Physica 117B&118B:959 (1983).

    Google Scholar 

  18. G. Lucovsky, C. K. Wong and W. B. Pollard, J. Non-Crystalline Solids 59&60:839 (1983).

    Article  Google Scholar 

  19. K. Arai, J. Non-Crystalline Solids 59&60:1059 (1983).

    Article  Google Scholar 

  20. Von G. Dittmar and H. Schafer, Acta Cryst. B32:2726 (1976).

    Google Scholar 

  21. Von G. Dittmar and H. Schafer, Acta Cryst. B31:2060 (1975).

    Google Scholar 

  22. Von G. Dittmar and H. Schafer, Acta Cryst. B32:1188 (1976).

    Google Scholar 

  23. J. E. Griffiths, G. P. Espinosa, J. P. Remeica and J. C. Phillips, Phys. Rev. 25:1272 (1982).

    ADS  Google Scholar 

  24. E. Haro, A. S. Zu, J. F. Maorhaange and M. Balkanski, Phys. Rev. B32:969 (1985).

    ADS  Google Scholar 

  25. S. Hino, T. Takahashi, and Y. Harada, Solid State Commun. 35:379 (1980).

    Article  ADS  Google Scholar 

  26. T. Ueno and A. Odajima, Jpn. J. Appl. Phys. 21:1382 (1982).

    Article  ADS  Google Scholar 

  27. S. G. Loue, Phys. Rev. B26:5993 (1982).

    ADS  Google Scholar 

  28. D. E. Aspnes and J. C. Phillips, K. L. Tai and P. M. Bridenbaugh, Phys. Rev. B23: 816 (1981).

    ADS  Google Scholar 

  29. J. R. Magana and J. S. Lannin, J. Non-Crystalline Solids 59&60:1055 (1983).

    Article  Google Scholar 

  30. G. Loucovsky, in “Physical Properties of Amorphous Materials” David Adler, Brian B. Dchwartz, and Martim c. Steele, ed., Plenum Press, New York (1985) p277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Murase, K., Inoue, K. (1987). Investigation of Medium Range Order by Photoemission, Reflectivity, Laser-Induced Crystallization Raman Spectroscopy in Amorphous GeSe2 . In: Kastner, M.A., Thomas, G.A., Ovshinsky, S.R. (eds) Disordered Semiconductors. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1841-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1841-5_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9028-5

  • Online ISBN: 978-1-4613-1841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics