Skip to main content

A Test of the Energy Maximization Premise of Optimal Foraging Theory

  • Chapter
Foraging Behavior

Abstract

A key premise of optimal foraging theory is that animals have, through the process of natural selection, evolved behaviors that tend to maximize their rate of energy intake (see Pyke, Pulliam, & Charnov 1977; Krebs 1978, for reviews). Therefore, a predator determines the relative costs and benefits of feeding on different prey types, and chooses the prey type that maximizes food value and predator survival. The predator does not necessarily make conscious decisions (Krebs 1978). Rather, the decision is the result of partially or wholly genetically controlled behavior shaped by evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich, F.A. 1956. A comparative study of the identification characters of Asterias forbesi and A. vulgaris. Notulae Naturae No. 28, 3 pp.

    Google Scholar 

  • Aldrich, J.C. 1976. The spider crab Libinia emarginata Leach 1815 (Decapoda: Brachyura) and the starfish, an unsuitable predator but a cooperative prey. Crustaceana, 31: 151–156.

    Article  Google Scholar 

  • Anger, K., Rogal, U., Schriever, G., and Valentin, C. 1977. In situ investigations on the echonoderm Asterias rubens as a predator of soft bottom communities in the western Baltic Sea, Helgolander wissenschaftliche Meereguntersuchungen, 29: 439–459.

    Article  Google Scholar 

  • Baird, R.H., and Drinnan, R.E. 1957. The ratio of shell to meat in Mytilus as a function of tidal exposure to air. Journal du Conseil, 22: 329–336.

    Article  Google Scholar 

  • Castilla, J.C. 1972. Responses of Asterias rubens to a bivalve prey in a Y-maze. Marine Biology. 12: 222.

    Article  Google Scholar 

  • Chidester, F.E. 1929. A starfish attempts to ingest a minnow. Science 70: 428–429.

    Article  PubMed  CAS  Google Scholar 

  • Dare, P.J. 1982. Notes on the swarming behavior and population density of Asterias rubens L. (Echinodermata: Asteroidea) feeding on the mussel, Mytilus edulis L. Journal du Conseil, 40: 112–118.

    Article  Google Scholar 

  • Dare, P.J., and Edwards, D.B. 1975. Seasonal changes in flesh weight and biochemical composition of mussels (Mytilus edulis L.) in the Conwy Estuary, North Wales. Journal of Experimental Marine Biology and Ecology, 18: 89–97.

    Article  CAS  Google Scholar 

  • DeBenedictis, P.A., Gill, F.B., Hainsworth, F.R., Pyke, C.H., and Wolf, L.L. 1978. Optimal meal size in hummingbirds. American Naturalist, 112: 301–316.

    Article  Google Scholar 

  • Doering, P.H. 1981. Observations on the behavior of Asterias forbesi feeding on Mercenaria mercenaria. Ophelia 20: 169–177.

    Google Scholar 

  • Doi, T. 1976. Some aspects of feeding ecology of the sea stars, genus Astropecten. Publications of Amakusa Marine Biology Laboratory, 4: 1–19.

    Google Scholar 

  • Elner, R.W., and Hughes, R.N. 1978. Energy maximization in the diet of the shore crab, Carcinus maenus (L). Journal of Animal Ecology, 47: 103–116.

    Article  Google Scholar 

  • Emlen, J.M. 1966. The role of time and energy in food preference. American Naturalist, 100: 611–617.

    Article  Google Scholar 

  • Ennis, G.P. 1973. Food, feeding, and condition of lobsters, Homarus americanus, throughout the seasonal cycle in Bonavista Bay, Newfoundland. Journal of Fisheries Research Board of Canada, 30: 1905–1909.

    Article  Google Scholar 

  • Ernst, E.J. 1967. The Distribution, Ecology, Environmental Behavior, and Possible Hybridization of the Sea Stars Asterias forbesi (Desor) and Asterias vulgaris Verrill in the Subtidal Zone of Long Island. Ph.D. dissertation, New York University.

    Google Scholar 

  • Fairweather, P.G., and Underwood, A.J. 1983. The apparent diet of predators and biases due to different handling times of their prey. Oecologia, 56: 169–179.

    Article  Google Scholar 

  • Feder, H.M., and Christensen, A.M. 1966. Aspects of asteroid biology. In: Physiology of Echinodermata (ed. by R.A. Boolootian ), pp. 87–127. Wiley Interscience, New York.

    Google Scholar 

  • Galtsoff, P.S., and Loosanoff, V.L. 1939. Natural history and method of controlling the starfish (Asterias forbesi, Desor). U.S. Bureau of Fisheries Bulletin, 31: 75–132.

    Google Scholar 

  • Gill, F.B., and Wolf, L.L. 1975. Foraging strategies and energetics of east african sunbirds at mistletoe flowers. American Naturalist, 109: 491–510.

    Article  Google Scholar 

  • Goss-Custard, J.D. 1977. Optimal foraging and the size selection of worms by redshank Tringa totanus. Animal Behaviour, 25: 10–129.

    Article  Google Scholar 

  • Griffiths, D. 1981. Sub-optimal foraging in the ant lion Macroleon quinquemaculatus. Journal of Animal Ecology, 50: 697–702.

    Article  Google Scholar 

  • Hancock, D.A. 1974. Some aspects of the biology of the sunstar Crossastrea papposus (L.). Ophelia, 13: 1–30.

    Google Scholar 

  • Heeb, M.A. 1973. Large molecules and chemical control of feeding behavior in the starfish Asterias forbesi. Helgolander wissenschaftliche Meereguntersuchungen, 24: 425–435.

    Article  CAS  Google Scholar 

  • Hixon, M.A. 1982. Energy maximizers and time minimizers: theory and reality. American Naturalist, 119: 596–599.

    Article  Google Scholar 

  • Hollander, M., and Wolfe, D.A. 1973. Non-parametric Statistical Methods. John Wiley and Sons, New York.

    Google Scholar 

  • Hughes, R.N. 1980. Optimal foraging in the marine context. Oceanogr. Marine Biology Annual Review, 18: 423–481.

    Google Scholar 

  • Jangoux, M. 1982. Food and feeding mechanisms: Asteroidea. In: Echinoderm Nutrition (ed. by M. Jangoux & J.M. Lawrence ), pp. 117–159. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Kim, Y.S. 1969. Selective feeding on the several bivalve molluscs by starfish, Asterias amurensis Luken. Bull. Fac. Fish. Hokkaido, 19: 244–249.

    Google Scholar 

  • Krebs, J.R. 1978. Optimal foraging. In: Behavioural Ecology (ed. by J.R. Krebs & N.B. Davies ), pp. 23–63. Blackwell Scientific, London.

    Google Scholar 

  • Krebs, J.R., Erichsen, J.T., Webber, M.I., and Charnov, E.L. 1977. Optimal prey choice in the great tit. Animal Behaviour, 25: 30–38.

    Article  Google Scholar 

  • Krebs, J.R., Houston, A.I., and Charnov, E.L. 1981. Some recent developments in optimal foraging. In: Foraging Behavior (ed. by A.C. Kamil & T.D. Sargent ), pp. 3–18. Garland STPM Press, New York.

    Google Scholar 

  • Landenberger, D.W. 1966. Learning in the Pacific starfish Pisaster giganteus. Animal Behavior, 14: 414–418.

    Article  CAS  Google Scholar 

  • Lavoie, M. 1956. How sea stars open bivalves. Biological Bulletin, 111: 114–122.

    Article  Google Scholar 

  • Lewontin, R.C. 1978. Fitness, survival, and optimality. In: Analysis of Ecological Systems (ed. by D.H. Horn, R. Mitchell, & G.R. Stairs ). Ohio State University Press, Columbus.

    Google Scholar 

  • MacArthur, R.H., and Pianka, E.R. 1966. On optimal use of a patchy environment. American Naturalist, 100: 603–609.

    Article  Google Scholar 

  • MacKenzie, C.L. 1970. Feeding rates of starfish, Asterias forbesi (Desor), at controlled water temperatures and during different seasons of the year. Fishery Bulletin of Fishery Wildlife Service U.S., 68: 67–72.

    Google Scholar 

  • Maloeuf, N.S.R. 1937. Studies oil the respiration (and osmoregulation) of animals. I. Aquatic animals without oxygen transporter in their internal medium. Zeitschrift fur Vergleichende Physiologie, 25: 1–28.

    Article  CAS  Google Scholar 

  • Maynard-Smith, J. 1978. Optimization theory in evolution. Annual Review of Ecology and Systematics, 9: 31–56.

    Article  Google Scholar 

  • McCleary, R.H. 1978. Optimal behaviour sequences and decision making. In: Behavioural Ecology (ed. by J.R. Krebs & N.B. Davies ), pp. 377–410. Blackwell Scientific, London.

    Google Scholar 

  • McClintock, J.B., and Lawrence, J.M. 1981. An optimization study on the feeding behavior of Luidia clathrata (Echinodermata: Asteroidea). Marine Behavior and Physiology, 7: 263–275.

    Article  Google Scholar 

  • McClintock, J.B., and Lawrence, J.M. 1982. Photoresponse and associative learning in Luidia clathrata Say (Echinodermata: Asteroidea). Marine Behavior and Physiology, 9: 13–21.

    Article  Google Scholar 

  • Mead, A.D. 1900. The natural history of starfish. Bulletin of U.S. Fisheries Commission, 19: 203–224.

    Google Scholar 

  • Menge, B.A. 1979. Coexistence between sea stars Asterias vulgaris and Asterias forbesi in a heterogeneous environment: a non-equilibrium explanation. Oecologia, 41: 245–272.

    Article  Google Scholar 

  • Menge, B.A. 1982. Effects of feeding on the environment: Asteroidea. In: Echinoderm Nutrition (ed. by M. Jangoux & J.M. Lawrence ), pp. 521–551. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Morse, D.H. 1980. Behavioral Mechanisms in Ecology. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Murtaugh, P. 1981. Size-selective predation on Daphnia by Neomysis mercedis. Ecology, 62: 894–900.

    Article  Google Scholar 

  • Pastorok, R.A. 1981. Prey vulnerability and size selection by Chaoborus larvae. Ecology, 62: 1311–1324.

    Article  Google Scholar 

  • Peterson, C.H., and Bradley, B.P. 1978. Estimating the diet of a sluggish predator from field observations. Journal of Fisheries Research Board of Canada, 35: 136–141.

    Article  Google Scholar 

  • Pulliam, H.R. 1975. Diet optimization with nutrient constraints. American Naturalist, 109: 765–768.

    Article  Google Scholar 

  • Pyke, G.H. 1980. Optimal foraging in bumblebees: calculation of net rate of energy intake and optimal patch choice. Theoretical Population Biology, 17: 232–246.

    Article  PubMed  CAS  Google Scholar 

  • Pyke, C.H., Pulliam, H.R., and Charnov, E.L. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology, 52: 137–154.

    Article  Google Scholar 

  • Richards, L.J. 1982. Prey selection by an intertidal beetle: field test of an optimal diet model. Oecologia, 55: 325–332.

    Article  Google Scholar 

  • Schoener, T.W. 1971. Theory of feeding strategies. Annual Review of Ecology and Systematics, 2: 369–404.

    Article  Google Scholar 

  • Sloan, N.A. 1980. Aspects of the feeding biology of asteroids, Oceanogr. Marine Biology Annual Review, 18: 57–124.

    Google Scholar 

  • Sloan, N.A., and Aldridge, T.H. 1981. Observations on an aggregation of the starfish Asterias rubens L. in Morecambe Bay, Lancashire, England. Journal of Natural History, 15: 409–417.

    Article  Google Scholar 

  • Sloan, N.A., and Campbell, A.C. 1982. Perception of food. In: Echinoderm Nutrition (ed. by M. Jangoux J.M. Lawrence ), pp. 3–23. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Strickland, J.D.H., and Parsons, T.R. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Bull. No. 167.

    Google Scholar 

  • Valentincic, T. 1975. Amino-acid chemoreception and other releasing factors in the feeding response of the sea star Marthasterias glacialis (D.). In: Proceedings Ninth European Marine Biology Symposium (ed. by H. Barnes ), pp. 693–705. University of Aberdeen Press, Great Britain.

    Google Scholar 

  • Valentincic, T. 1978. Learning in the starfish Marthasterias glacialis. In: Proceedings Twelfth European Marine Biology Symposium (ed. by D.S. McLusky & A.J. Berry ), pp. 303–309. Pergamon Press, Oxford.

    Google Scholar 

  • Warner, G.F. 1979. Aggregation in Echinoderms. In: Biology and Systematics of Colonial Organisms (ed. by G. Larwood & B.R. Rosen ), pp. 375–396. Academic Press, New York.

    Google Scholar 

  • Willows, A.O.D., and Corning, W.C. 1975. The echinoderms. In: Invertebrate Learning, Vol. 3, Cephalopods and Echinoderms (ed. by W.C. Corning, J.A. Dyal, & A.O.D. Willows ), pp. 103–135. Plenum Press, New York.

    Google Scholar 

  • Wolf, L.L., Hainsworth, F.R., and Gill, F.B. 1975. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology, 56: 117–128.

    Article  Google Scholar 

  • Wolf, L.L., Stiles, F.G., and Hainsworth, F.R. 1972. Energetics of foraging: rate and efficiency of nectar extraction by hummingbirds. Science, 176: 1351–1352.

    Article  PubMed  CAS  Google Scholar 

  • Zach, R. 1979. Shell dropping: decision making and optimal foraging in northwestern crows. Behaviour, 68: 106–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Campbell, D.B. (1987). A Test of the Energy Maximization Premise of Optimal Foraging Theory. In: Kamil, A.C., Krebs, J.R., Pulliam, H.R. (eds) Foraging Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1839-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1839-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9027-8

  • Online ISBN: 978-1-4613-1839-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics