Selenium, Vitamin E, Fiber, and the Incidence of Human Cancer: An Epidemiologic Perspective

  • Walter C. Willett

Abstract

It has been hypothesized that selenium, vitamin E, and fiber reduce the risk of specific human cancers. Evidence for a role of selenium is based primarily on animal studies, inverse geographic correlations between intake and site-specific cancer incidence, and an inverse association between serum selenium and subsequent risk of cancer. Certain geographic areas with high fiber intakes have lower rates of colon cancer and, in several case-control studies, consumption of fruits and vegetables has been associated with a lower risk of large bowel cancer. Suspicion that vitamin E might reduce the risk of human cancer is largely theoretical; a protective association has been observed in only 1 small study of breast cancer. The evidence that these 3 dietary factors reduce the risk of human cancer remains incomplete. Future epidemiologic investigations should simultaneously assess a wide variety of dietary factors to address potential confounding and interacting effects. Prospective study designs should be used whenever possible to avoid any influence of cancer on dietary intake or its measurement.

Keywords

Cholesterol Cellulose Corn Cadmium Glutathione 

Abbreviations

r

correlation coefficient

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. C. Willett and B. MacMahon, Diet and cancer: An overview (parts I and II), N. Engl. J. Med. 310:633, 697 (1984).CrossRefGoogle Scholar
  2. 2.
    C. K. Chow, Nutritional influence on cellular antioxidant defense systems, Am. J. Clin. Nutr. 32:1066 (1979).Google Scholar
  3. 3.
    G. N. Schrauzer, D. A. White, and C. J. Schneider, Cancer mortality correlation studies III. Statistical associations with dietary selenium intakes, Bioinorg. Chem. 7:23 (1977).CrossRefGoogle Scholar
  4. 4.
    R. J. Shamberger, S. A. Tytko, and C. E. Willis, Antioxidants and cancer. VI. Selenium and age-adjusted human cancer mortality, Arch. Environ. Health 31:231 (1976).Google Scholar
  5. 5.
    R. J. Shamberger, E. Rukovena, A. K. Longfield, et al., Antioxidants and cancer. I. Selenium in the blood of normals and cancer patients, J. Natl. Cancer Inst. 50:863 (1973).Google Scholar
  6. 6.
    K. P. McConnell, W. L. Broghamer, Jr., A. J. Blotcky, et al., Selenium levels in human blood and tissues in health and in disease, J. Nutr. 105:1026 (1975).Google Scholar
  7. 7.
    W. L. Broghamer, Jr., K. P. McConnell, and A. J. Blotcky, Relationship between serum selenium levels and patients with carcinoma, Cancer 37:1384 (1976).CrossRefGoogle Scholar
  8. 8.
    K. P. McConnell, R. M. Jager, K. I. Bland, et al., The relationship of dietary selenium and breast cancer, J. Surg. Oncol. 15:67 (1980).CrossRefGoogle Scholar
  9. 9.
    M. F. Robinson, P. J. Godfrey, C. D. Thomson, et al., Blood selenium and glutathione peroxidase activity in normal subjects and in surgical patients with and without cancer in New Zealand, Am. J. Clin. Nutr. 32:1477 (1979).Google Scholar
  10. 10.
    W. C. Willett, B. F. Polk, J. S. Morris, et al., Prediagnostic serum selenium and risk of cancer, Lancet 2:130 (1983).CrossRefGoogle Scholar
  11. 11.
    J. T. Salonen, G. Alfthan, J. K. Huttunen, et al., Association between serum selenium and risk of cancer, Am. J. Epidemiol. 120:342 (1984).Google Scholar
  12. 12.
    L. C. Clark, G. F. Graham, R. G. Crouse, et al., Plasma selenium and skin neoplasia: A case-control study, Nutr. Cancer 6:13 (1984).CrossRefGoogle Scholar
  13. 13.
    A. Bozkurt and J. C. Smith, The interaction between cadmium and selenium in the rat, in: “Selenium and Biology in Medicine,” J. E. Spallholz, J. L. Martin, and H. E. Ganther, eds., AVI Press, Westport, Conn. (1981).Google Scholar
  14. 14.
    A. T. Diplock, The biological role of vitamin E and the nature of the interaction of the vitamin with selenium, World Rev. Nutr. Diet 31:178 (1978).Google Scholar
  15. 15.
    C. D. Thomson, M. F. Robinson, D. R. Campbell, et al., Effect of prolonged supplementation with daily supplements of selenomethionine and sodium selenite on glutathione peroxidase activity in blood of New Zealand residents, Am. J. Clin. Nutr. 36:24 (1982).Google Scholar
  16. 16.
    0. A. Levander, G. Alfthan, H. Arvilommi, et al., Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters, Am. J. Clin. Nutr. 37:887 (1983).Google Scholar
  17. 17.
    T. H. Maugh II, Hair: A diagnostic tool to complement blood, serum, and urine, Science 202:1271 (1978).CrossRefGoogle Scholar
  18. 18.
    M. Laker, On determining trace element levels in man: The uses of blood and hair, Lancet 2:260 (1982).CrossRefGoogle Scholar
  19. 19.
    J. S. Morris, M. J. Stampfer, and W. Willett, Toenails as an indicator of dietary selenium, Biol. Trace Element Res. 5:529 (1983).CrossRefGoogle Scholar
  20. 20.
    M. M. Jacobs, T. S. Matney, and A. C. Griffin, Inhibitory effects of selenium on the mutagenicity of 2-acetylaminofluorene (AAF) and AAF derivatives, Cancer Lett. 2:319 (1977).CrossRefGoogle Scholar
  21. 21.
    R. J. Shamberger, K. D. Beaman, C. L. Corlett, et al., Effect of selenium and other antioxidants on the mutagenicity of malonalde-hyde (Abstract), Fed. Proc. 37:261 (1978).Google Scholar
  22. 22.
    M. V. Marshall, M. A. Arnott, M. M. Jacobs, et al., Selenium effects on the carcinogenicity and metabolism of 2-acetylaminofluorene, Cancer Lett. 7:331 (1979).CrossRefGoogle Scholar
  23. 23.
    C. C. Clayton and C. A. Baumann, Diet and azo dye tumors: Effect of diet during a period when dye is not fed, Cancer Res. 9:575 (1949).Google Scholar
  24. 24.
    R. J. Shamberger, Relationship of selenium to cancer. I. Inhibitory effect of selenium on carcinogenesis, J. Natl. Cancer Inst. 44:931 (1970).Google Scholar
  25. 25.
    A. C. Griffin and M. M. Jacobs, Effects of selenium on azo dye hepato- carcinogenesis, Cancer Lett. 3:177 (1977).CrossRefGoogle Scholar
  26. 26.
    A. H. Daoud and A. C. Griffin, Effects of selenium and retinoic acid on the metabolism of N-acetylaminofluorene and N-hydroxyacetyl-aminofluorene, Cancer Lett. 5:231 (1978).CrossRefGoogle Scholar
  27. 27.
    G. A. Greeder and J. A. Milner, Factors influencing the inhibitory effect of selenium on mice inoculated with Ehrlich ascites tumor cells, Science 209:825 (1980).CrossRefGoogle Scholar
  28. 28.
    H. J. Thompson and P. J. Becci, Selenium inhibition of N-methyl-N- nitrosourea-induced mammary carcinogenesis in the rat, J. Natl. Cancer Inst. 65:1299 (1980).Google Scholar
  29. 29.
    G. N. Schrauzer and D. Ishmael, Effects of selenium and of arsenic on the genesis of spontaneous mammary tumors in inbred C3H mice, Ann. Clin. Lab. Sci. 4:441 (1974).Google Scholar
  30. 30.
    D. Medina, Selenium and murine mammary tumorigenesis, Cancer Bull. 34:162 (1982).Google Scholar
  31. 31.
    R. F. Burk, R. A. Lawrence, and J. M. Lane, Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration: Effect of selenium deficiency, J. Clin. Invest. 65:1024 (1980).CrossRefGoogle Scholar
  32. 32.
    C. Ip and D. K. Sinha, Enhancement of mammary tumorigenesis by dietary selenium deficiency in rats with a high polyunsaturated fat intake, Cancer Res. 41:31 (1981).Google Scholar
  33. 33.
    A. L. Tappel, Vitamin E and selenium protection from in vivo lipid peroxidation, Ann. N.Y. Acad. Sci. 355:18 (1980).CrossRefGoogle Scholar
  34. 34.
    H. J. Thompson and P. J. Becci, Effect of graded dietary levels of selenium on tracheal carcinomas induced by l-methyl-l-nitrosourea, Cancer Lett. 7:215 (1979).CrossRefGoogle Scholar
  35. 35.
    J. E. Spallholz, Selenium: What role in immunity of immune cytotoxicity? in: “Selenium in Biology and Medicine,” J. E. Spallholz, J. L. Martin, and H. E. Ganther, eds., AVI Press, Westport, Conn. (1981).Google Scholar
  36. 36.
    R. E. Lemley, Selenium poisoning in the human: A preliminary report, Lancet 60:528 (1940).Google Scholar
  37. 37.
    W. C. Willett, B. F. Polk, B. A. Underwood, et al., Relation of serum vitamins A and E and carotenoids to the risk of cancer, N. Engl. J. Med. 310:430 (1984).CrossRefGoogle Scholar
  38. 38.
    N. J. Wald, J. Boreham, J. L. Hayward, et al., Plasma retinol, 3-carotene and vitamin E levels in relation to the future risk of breast cancer, Br. J. Cancer 49:321 (1984).CrossRefGoogle Scholar
  39. 39.
    W. G. Jaffe, The influence of wheat germ oil on the production of tumors in rats by methylcholanthrene, Exp. Med. Surg. 4:278 (1946).Google Scholar
  40. 40.
    S. L. Haber and R. W. Wissler, Effect of vitamin E on the carcinogenicity of methylcholanthrene, Proc. Soc. Exp. Biol. Med. 111:774 (1962).Google Scholar
  41. 41.
    M. G. Cook and P. McNamara, Effect of dietary vitamin E on dimethyl- hydrazine-induced colonic tumors in mice, Cancer Res. 40:1329 (1980).Google Scholar
  42. 42.
    S. S. Epstein, J. S. Joshi, J. Andrea, et al., The null effect of antioxidants on the carcinogenicity of 3,4,9,10-dibenzpyrene to mice, Life Sci. 6:225 (1967).CrossRefGoogle Scholar
  43. 43.
    L. W. Wattenberg, Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by phenolic antioxidants and ethoxyquin, J. Natl. Cancer Inst. 48:1425 (1972).Google Scholar
  44. 44.
    J. G. Bieri, L. Corash, and V. S. Hubbard, Medical uses of vitamin E,N. Engl. J. Med. 308:1063 (1983).CrossRefGoogle Scholar
  45. 45.
    R. J. Shamberger, C. L. Corbett, K. D. Bearman, et al., Antioxidants reduce the mutagenic effect of malonaldehyde and B-propiolactone. IX. Antioxidants and cancer, Mutat. Res. 66:349 (1979).CrossRefGoogle Scholar
  46. 46.
    D. P. Burkitt, Epidemiology of cancer of the colon and rectum, Cancer 28:3 (1971).CrossRefGoogle Scholar
  47. 47.
    B. Armstrong and R. Doll, Environmental factors and cancer incidence and mortality in different countries with special reference to dietary practices, Int. J. Cancer 15:617 (1975).CrossRefGoogle Scholar
  48. 48.
    P. Sherlock, M. Lipkin, and S. J. Winawer, Predisposing factors in carcinoma of the colon, Adv. Intern. Med. 20:121 (1975).Google Scholar
  49. 49.
    K. Liu, J. Stamler, D. Moss, et al., Dietary cholesterol, fat, and fibre, and colon-cancer mortality: An analysis of international data, Lancet 2:782 (1979).CrossRefGoogle Scholar
  50. 50.
    G. E. McKoewn-Eyssen and E. Bright-See, Dietary factors in colon cancer: International relationships, Nutr. Cancer 6:160 (1984).CrossRefGoogle Scholar
  51. 51.
    S. Bingham, D. R. Williams, T. J. Cole, et al., Dietary fibre and regional large-bowel cancer mortality in Britain, Jir. J. Cancer 40:456 (1979).CrossRefGoogle Scholar
  52. 52.
    E. Bjelke, “Epidemiologic Studies of Cancer of the Stomach, Colon and Rectum, with Special Emphasis on the Role of Diet, vol. 3,” University Microfilm, Ann Arbor, Mich. (1973).Google Scholar
  53. 53.
    S. Graham, H. Dayal, M. Swanson, et al., Diet in the epidemiology of cancer of the colon and rectum, J. Natl. Cancer Inst. 61:709 (1978).Google Scholar
  54. 54.
    O. Manousos, N. E. Day, D. Trichopoulos, et al., Diet and colorectal cancer: A case-control study in Greece, Int. J. Cancer 32:1 (1983).CrossRefGoogle Scholar
  55. 55.
    B. Modan, V. Barell, F. Lubin, et al., Low-fiber intake as an etiologic factor in cancer of the colon, J. Natl. Cancer Inst. 55:15 (1975).Google Scholar
  56. 56.
    L. G. Dales, G. D. Friedman, H. K. Ury, et al., A case-control study of relationships of diet and other traits to colorectal cancer in American blacks, Am. J. Epidemiol. 109:132 (1978).Google Scholar
  57. 57.
    M. Jain, G. M. Cook, F. G. Davis, et al., A case-control study of diet and colo-rectal cancer, Int. J. Cancer 26:757 (1980).CrossRefGoogle Scholar
  58. 58.
    I. Martinez, R. Torres, Z. Frias, et al., Factors associated with adenocarcinomas of the large bowel in Puerto Rico, in: “Advances in Medical Oncology, Research and Education, vol. 3,” J. M. Birch, ed., Pergamon Press, New York (1979).Google Scholar
  59. 59.
    E. Bjelke, Epidemiology of colorectal cancer with emphasis on diet. Its characterization and treatment, in: “Proceedings of the Eighth International Symposium on the Biological Characterization of Human Tumors, Athens, May 8, 1979,” W. Davis, K. R. Harrap, G. Statopoulos, eds., International Congress Series No. 484, Excerpta Medica, Amsterdam (1980).Google Scholar
  60. 60.
    D. A. T. Southgate, The definition and analysis of dietary fibre, Nutr. Rev. 35:31 (1977).CrossRefGoogle Scholar
  61. 61.
    G. A. Glober, A. Nomura, S. Kamiyama, et al., Bowel transit-time and stool weight in populations with different colon-cancer risks, Lancet 2:110 (1977).CrossRefGoogle Scholar
  62. 62.
    B. S. Reddy, A. R. Hedges, K. Laakso, et al., Metabolic epidemiology of large bowel cancer: Fecal bulk and constituents of high-risk North American and low-risk Finnish population, Cancer 42:2832 (1978).CrossRefGoogle Scholar
  63. 63.
    J. A. Story and D. Kritchevsky, Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber, J. Nutr. 106:1292 (1976).Google Scholar
  64. 64.
    B. S. Reddy and E. L. Wynder, Large-bowel carcinogenesis: Fecal constituents of populations with diverse incidence rates of colon cancer, J. Natl. Cancer Inst. 50:1437 (1973).Google Scholar
  65. 65.
    R. B. Wilson, D. P. Hutcheson, and L. Wideman, Dimethylhydrazine-induced colon tumors in rats fed diets containing beef fat or corn oil with and without wheat bran, Am. J. Clin. Nutr. 30:176 (1977).Google Scholar
  66. 66.
    H. J. Freeman, G. A. Spiller, and Y. S. Kim, A double-blind study on the effect of purified cellulose dietary fiber on 1,2-dimethyl-hydrazine-induced rat colonic neoplasia, Cancer Res. 38:2912 (1978).Google Scholar
  67. 67.
    N. G. Asp, H. Bauer, A. Dahlqvist, et al., Dietary fiber and experimental colon cancer in the rat, Nutr. Cancer 1:70 (1979).CrossRefGoogle Scholar
  68. 68.
    B. S. Reddy, H. Mori, and M. Nicolais, Effect of dietary wheat bran and dehydrated citrus fiber on azoxymethane-induced intestinal carcinogenesis in Fischer 344 rats, J. Natl. Cancer Inst. 66:553 (1981).Google Scholar
  69. 69.
    L. W. Wattenberg and W. D. Loub, Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles, Cancer Res. 38:1410 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Walter C. Willett
    • 1
  1. 1.Department of EpidemiologyHarvard University School of Public HealthBostonUSA

Personalised recommendations