The Relationship between the Vitamin D System and Cancer

  • Hector F. DeLuca
  • Voula Ostrem


The classic function of 1,25-dihydroxyvitamin D3, the hormonally active form of vitamin D, is the maintenance of normal levels of calcium and phosphorus in the blood. 1,25-Dihydroxyvitamin D3 binds to a specific receptor protein and exerts its biologic action by a mechanism analogous to that proposed for other steroid hormones, that is, the receptor-ligand complex acts on the chromatin to induce transcription of specific genes. Intracellular receptors that bind 1,25-dihydroxyvitamin D3 with high affinity have been found in a large number of tumor cell lines examined as melanoma, osteosarcoma, and human breast and colonic carcinoma cells. The 1,25-dihydroxyvitamin D3 receptor in these cells has characteristics similar to the receptor in bone and intestine, the known target tissues of the hormone. In fact, 1,25-dihydroxyvitamin D3 inhibits the proliferation of melanoma, osteosarcoma, and breast carcinoma cells. More recently, 1,25-dihydroxyvitamin D3 has been shown to suppress the growth and induce monocytic differentiation of murine and human myeloid leukemia cells in vitro. These results point to a previously unsuspected involvement of vitamin D in cell proliferation and differentiation and suggest that analogs of the vitamin D hormone may be of interest as possible therapeutic agents in the treatment of malignancy.


Parathyroid Gland Myeloid Leukemia Cell Human Breast Carcinoma Cell Human Myeloid Leukemia Cell Intestinal Calcium Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



25-hydroxyvitamin D3


1α, 25-dihydroxyvitamin D3




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Mellanby, An experimental investigation on rickets, Lancet 1:407 (1919).Google Scholar
  2. 2.
    E. V. McCollum, N. Simmonds, J. E. Becker, et al., Studies on experimental rickets. XXXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition, J. Biol. Chem. 53:293 (1922).Google Scholar
  3. 3.
    H. F. DeLuca, Vitamin D: Metabolism and function, in: “Monographs on Endocrinology,” R. Gross, M. M. Grumbach, A. Labhart, et al., eds., Springer-Verlag, New York (1979).Google Scholar
  4. 4.
    H. F. DeLuca and H. K. Schnoes, Vitamin D: Recent advances, Annu. Rev. Biochem. 52:411 (1983).CrossRefGoogle Scholar
  5. 5.
    A. Hess, ed., The history of rickets, in: “Rickets, Including Osteomalacia and Tetany,” Lea & Febiger, Philadelphia (1929).Google Scholar
  6. 6.
    J. L. Underwood and H. F. DeLuca, Vitamin D is not directly necessary for bone growth and mineralization, Am. J. Physiol. 246:E493 (1984).Google Scholar
  7. 7.
    R. S. Weinstein, J. L. Underwood, M. S. Hutson, et al., Bone histo-morphometry in vitamin D-deficient rats infused with calcium and phosphorus, Am. J. Physiol. 246:E499 (1984).Google Scholar
  8. 8.
    H. M. Frost, “Bone Dynamics in Osteoporosis and Osteomalacia,” Henry Ford Hospital Surgical Monograph Series, Charles C. Thomas, Springfield, 111. (1966).Google Scholar
  9. 9.
    L. G. Raisz, C. L. Trummel, M. F. Holick, et al., 1,25-Dihydroxy-cholecalciferol: A potent stimulator of bone resorption in tissue culture, Science 175:768 (1972).CrossRefGoogle Scholar
  10. 10.
    J. J. Reynolds, M. F. Holick, and H. F. DeLuca, The role of vitamin D metabolites in bone resorption, Calcif. Tissue Res. 12:295 (1973).CrossRefGoogle Scholar
  11. 11.
    M. F. Holick, The cutaneous photosynthesis of previtamin D3: A unique photoendocrine system, J. Invest. Dermatol. 76:51 (1981).CrossRefGoogle Scholar
  12. 12.
    R. P. Esvelt, H. K. Schnoes, and H. F. DeLuca, Vitamin D3 from rat skins irradiated in vitro with ultraviolet light, Arch. Biochem. Biophys. 188:282 (1978).CrossRefGoogle Scholar
  13. 13.
    T. C. Madhok and H. F. DeLuca, Characteristics of the rat liver microsomal enzyme system converting cholecalciferol into 25-hydroxycholecalciferol. Evidence for the participation of cytochrome P-450, Biochem. J. 184:491 (1979).Google Scholar
  14. 14.
    P. S. Yoon and H. F. DeLuca, Resolution and reconstitution of soluble components of rat liver microsomal vitamin D3 25-hydroxylase, Arch. Biochem. Biophys. 203:529 (1980).CrossRefGoogle Scholar
  15. 15.
    G. Tucker III, R. E. Gagnon, and M. R. Haussler, Vitamin D3-25-hydroxylase: Tissue occurrence and apparent lack of regulation, Arch. Biochem. Biophys. 155:47 (1973).CrossRefGoogle Scholar
  16. 16.
    M. H. Bhattacharyya and H. F. DeLuca, The regulation of calciferol-25-hydroxylase in the chick, Biochem. Biophys. Res. Commun. 59:734 (1974).CrossRefGoogle Scholar
  17. 17.
    I. Bjorkhem, I. Holberg, H. Oftebro, et al., Properties of a reconstituted vitamin D3 25-hydroxylase from rat liver mitochondria, J. Biol. Chem. 255:5244 (1980).Google Scholar
  18. 18.
    J. A. Eisman, R. M. Shepard, and H. F. DeLuca, Determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma using high-pressure liquid chromatography, Anal. Biochem. 80:298 (1977).CrossRefGoogle Scholar
  19. 19.
    J. G. Haddad and T. C. B. Stamp, Circulating 25-hydroxyvitamin D in man, Am. J. Med. 57:57 (1974).CrossRefGoogle Scholar
  20. 20.
    L. Reeve, Y. Tanaka, and H. F. DeLuca, Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo, J. Biol. Chem. 258:3615 (1984).Google Scholar
  21. 21.
    T. D. Schultz, J. Fox, H. Heath III, et al., Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination, Proc. Natl. Acad. Sci. U.S.A. 80:1746 (1983).CrossRefGoogle Scholar
  22. 22.
    R. W. Gray, J. L. Omdahl, J. G. Ghazarian, et al., 25-Hydroxychole-calciferol-1-hydroxylase: Subcellular location and properties, J. Biol. Chem. 247:7528 (1972).Google Scholar
  23. 23.
    J. G. Ghazarian, C. R. Jefcoate, J. C. Knutson, et al., Mitochondrial cytochrome P450: A component of chick kidney 25-hydroxychole-calciferol-lα-hydroxylase, J. Biol. Chem. 249:3026 (1974).Google Scholar
  24. 24.
    J. I. Pedersen, J. G. Ghazarian, N. R. Orme-Johnson, et al., Isolation of chick renal mitochondrial ferredoxin active in the 25-hydroxy-vitamin D3-1α-hydroxylase system, J. Biol. Chem. 251:3933 (1976).Google Scholar
  25. 25.
    Y. Tanaka, B. Halloran, H. K. Schnoes, et al., In vitro production of 1,25-dihydroxyvitamin D3 by rat placental tissue, Proc. Natl. Acad. Sci. U.S.A. 76:5033 (1979).CrossRefGoogle Scholar
  26. 26.
    M. F. Holick, H. K. Schnoes, H. F. DeLuca, et al., Isolation and identification of 24,25-dihydroxycholecalciferol: A metabolite of vitamin D3 made in the kidney, Biochemistry 11:4251 (1972).CrossRefGoogle Scholar
  27. 27.
    Y. Tanaka, J. K. Wichmann, H. K. Schnoes, et al., Isolation and identification of 23,25-dihydroxyvitamin D3, an in vivo metabolite of vitamin D3, Biochemistry 20:3875 (1981).CrossRefGoogle Scholar
  28. 28.
    S. Yamada, K. Nakayama, H. Takayama, et al., Isolation, identification and metabolism of (23S,25R)-25-hydroxyvitamin D3 27,23-lactol (a biosynthetic precursor of (23S,25R)-25-hydroxyvitamin D3 26,23-lactone), J. Biol. Chem. 259:884 (1984).Google Scholar
  29. 29.
    J. K. Wichmann, H. F. DeLuca, H. K. Schnoes, et al., 25-Hydroxyvitamin D3 26,23-lactone: A new in vivo metabolite of vitamin D, Biochemistry 18:4775 (1979).CrossRefGoogle Scholar
  30. 30.
    N. Ikekawa, N. Koizumi, H. Ohshima, et al., Natural 25,26-dihydroxy-vitamin D3 is an epimeric mixture, Proc. Natl. Acad. Sci. U.S.A. 80:5286 (1983).CrossRefGoogle Scholar
  31. 31.
    R. Brommage, K. Jarnagin, H. F. DeLuca, et al., 1-But not 24-hydroxylation of vitamin D is required for skeletal mineralization in rat, Am. J. Physiol. 244:E298 (1983).Google Scholar
  32. 32.
    A. M. Parfitt, C. H. E. Mathews, R. Brommage, et al., Calcitriol but no other metabolite of vitamin D is essential for normal bone growth and development in the rat, J. Clin. Invest. 73:576 (1984).CrossRefGoogle Scholar
  33. 33.
    Y. Tanaka, D. N. Pahuja, J. K. Wichmann, et al., 25-Hydroxy-26,26,26,27,27,27-hexafluorovitamin D3: Biological activity in the rats, Arch. Biochem. Biophys. 218:134 (1982).CrossRefGoogle Scholar
  34. 34.
    M. Nakada, Y. Tanaka, H. F. DeLuca, et al., Biological activities and binding properties of 23,23-difluoro-25-hydroxyvitamin D3 and its lor-hydroxy derivative, Arch. Biochem. Biophys. 241:173 (1985).CrossRefGoogle Scholar
  35. 35.
    P. F. Brumbaugh and M. R. Haussler, Nuclear and cytoplasmic binding components for vitamin D metabolites, Life Sci. 16:353 (1975).CrossRefGoogle Scholar
  36. 36.
    B. E. Kream, R. D. Reynolds, J. C. Knutson, et al., Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3, Arch. Biochem. Biophys. 176:779 (1976).CrossRefGoogle Scholar
  37. 37.
    M. R. Walters, W. Hunziker, and A. W. Norman, Unoccupied 1,25-dihydroxyvitamin D3 receptors. Nuclear/cytosol ratio depends on ionic strength, J. Biol. Chem. 255:6799 (1980).Google Scholar
  38. 38.
    M. Nakada, R. U. Simpson, and H. F. DeLuca, Subcellular distribution of DNA and non-DNA-binding 1,25-dihydroxyvitamin D receptors in chick intestine, Proc. Natl. Acad. Sci. U.S.A. 81:6711 (1984).CrossRefGoogle Scholar
  39. 39.
    B. E. Kream, S. Yamada, H. K. Schnoes, et al., Specific cytosol binding protein for 1,25-dihydroxyvitamin D3 in rat intestine, J. Biol. Chem. 252:4501 (1977).Google Scholar
  40. 40.
    R. T. Franceschi and H. F. DeLuca, Aggregation properties of the 1,25-dihydroxyvitamin D3 receptor from chick intestinal cytosol, J. Biol. Chem. 254:11629 (1979).Google Scholar
  41. 41.
    W. S. Mellon and H. F. DeLuca, An equilibrium and kinetic study of 1,25-dihydroxyvitamin D3 binding to chicken intestinal cytosol employing high specific activity 1,25-dihydroxy[3H-26,27]vitamin D3, Arch. Biochem. Biophys. 197:90 (1979).CrossRefGoogle Scholar
  42. 42.
    J. A. Eisman and H. F. DeLuca, Intestinal 1,25-dihydroxyvitamin D3 binding protein: Specificity of binding, Steroids 30:245 (1977).CrossRefGoogle Scholar
  43. 43.
    B. E. Kream, M. J. L. Jose, and H. F. DeLuca, The chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D3: A study of analog binding, Arch. Biochem. Biophys. 179:462 (1977).CrossRefGoogle Scholar
  44. 44.
    R. U. Simpson, A. Hamstra, N. C. Kendrick, et al., Purification of the receptor for 1α,25-dihydroxyvitamin D3 from chicken intestine, Biochemistry 22:2586 (1983).CrossRefGoogle Scholar
  45. 45.
    J. W. Pike, S. L. Marion, C. A. Donaldson, et al., Serum and monoclonal antibodies against the chick intestinal receptor for 1,25-dihydroxyvitamin D3, J. Biol. Chem. 258:1289 (1983).Google Scholar
  46. 46.
    M. C. Dame, E. A. Pierce, and H. F. DeLuca, Identification of the porcine intestinal 1,25-dihydroxyvitamin D3 receptor on sodium dodecyl sulfate-polyacrylamide gels by renaturation and immuno-blotting, Proc. Natl. Acad. Sci. U.S.A. 82:7825 (1985).CrossRefGoogle Scholar
  47. 47.
    M. C. Dame, E. A. Pierce, J. M. Prahl, et al., Monoclonal antibodies to the porcine intestinal receptor for 1,25-dihydroxyvitamin D3: Interaction with distinct receptor domains, Biochemistry (in press, 1986).Google Scholar
  48. 48.
    B. P. Halloran and H. F. DeLuca, Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D3 during neonatal development in the rat, J. Biol. Chem. 256:7338 (1981).Google Scholar
  49. 49.
    N. H. Bell, A. J. Hamstra, and H. F. DeLuca, Vitamin D-dependent rickets Type II: Resistance of target organs to 1,25-dihydroxyvitamin D, N. Engl. J. Med. 298:996 (1978).CrossRefGoogle Scholar
  50. 50.
    U. A. Liberman, C. Eil, P. Holst, et al., Hereditary resistance to 1,25-dihydroxyvitamin D: Defective function of receptors for 1,25-dihydroxyvitamin D in cell cultured from bone, J. Clin. Endocrinol. Metab. 57:958 (1983).CrossRefGoogle Scholar
  51. 51.
    H. Rasmussen, O. Fontaine, and T. Matsumoto, Liponomic regulation of calcium transport by 1,25-(0H)2D3, Ann. N.Y. Acad. Sci. 372:518 (1981).CrossRefGoogle Scholar
  52. 52.
    B. P. Halloran and H. F. DeLuca, Intestinal calcium transport: Evidence for two distinct mechanisms of action of 1,25-dihydroxyvitamin D3, Arch. Biochem. Biophys. 208:477 (1981).CrossRefGoogle Scholar
  53. 53.
    R. T. Franceschi and H. F. DeLuca, The effect of inhibitors of protein and RNA synthesis on 1α-dihydroxyvitamin D3 dependent calcium uptake in cultured embryonic chick duodenum, J. Biol. Chem. 256:3848 (1981).Google Scholar
  54. 54.
    R. A. Corradino, 1,25-Dihydroxycholecalciferol: Inhibition of action in organ-cultured intestine by actinomycin D and α-amanitin, Nature 243:41 (1973).CrossRefGoogle Scholar
  55. 55.
    R. H. Wasserman and J. J. Feher, Vitamin D-dependent calcium-binding proteins, in: “Calcium Binding Proteins and Calcium Function,” R. H. Wasserman, R. A. Corradino, E. Carafoli, et al., eds., Elsevier, New York (1977).Google Scholar
  56. 56.
    C. W. Bishop, N. C. Kendrick, and H. F. DeLuca, The early time course of calcium-binding protein induction by 1,25-dihydroxyvitamin D3 as determined by computer analysis of two-dimensional electrophoresis gels, J. Biol. Chem. 259:3355 (1984).Google Scholar
  57. 57.
    P. A. Price and S. A. Baukol, 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin D-dependent bone protein by osteosarcoma cells, J. Biol. Chem. 255:11660 (1980).Google Scholar
  58. 58.
    T. Shinki, N. Takahashi, and C. Miyaura, Ornithine decarboxylase activity in chick duodenum induced by 1α,25-dihydroxychole-calciferol, Biochem. J. 195:685 (1981).Google Scholar
  59. 59.
    T. Shinki, N. Takahashi, T. Kadofuku, et al., Induction of spermidine N1-acetyltransferase by 1α,25-dihydroxyvitamin D3 as an early common event in the target tissues of vitamin D, J. Biol. Chem. (in press, 1985).Google Scholar
  60. 60.
    J. L. Napoli, W. S. Mellon, M. A. Fivizzani, et al., Direct chemical synthesis of 1α,25-dihydroxy[26,27-3H]-vitamin D3 with high specific activity: Its use in receptor studies, Biochemistry 19:2515 (1980).CrossRefGoogle Scholar
  61. 61.
    W. S. Stumpf, M. Sar, and H. F. DeLuca, Sites of action of 1,25 (OH)2 vitamin D3 identified by thaw-mount autoradiography, in: “Hormonal Control of Calcium Metabolism,” D. V. Cohn, R. V. Talmage, and J. L. Matthews, eds., Excerpta Medica, Amsterdam (1981).Google Scholar
  62. 62.
    W. S. Stumpf, M. Sar, F. A. Reid, et al., Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid, Science 206:1188 (1979).CrossRefGoogle Scholar
  63. 63.
    W. S. Stumpf, M. Sar, F. A. Reid, et al., Autoradiographic studies with H 1,25 (OH)2 vitamin D3 and H 25 (OH) vitamin D3 in rat parathyroid glands, Cell Tissue Res. 221:333 (1981).CrossRefGoogle Scholar
  64. 64.
    J. H. Saurat, L. Didierjean, J. H. Pavlovich, et al., Skin calcium binding protein is localized in the cytoplasma of the basal layer of the epidermis, J. Invest. Dermatol. 76:221 (1981).CrossRefGoogle Scholar
  65. 65.
    A. W. Norman, B. J. Frankel, A. M. Heldt, et al., Vitamin D deficiency inhibits pancreatic secretion of insulin, Science 209:823 (1980).CrossRefGoogle Scholar
  66. 66.
    S. L. Teitelbaum, M. A. Bergfeld, J. Freitag, et al., Do parathyroid hormone and 1,25-dihydroxyvitamin D modulate bone formation in uremia? J. Clin. Endocrinol. Metab. 51:247 (1980).CrossRefGoogle Scholar
  67. 67.
    D. Laouari, H. Pavlovitch, G. Deceneus, et al., A vitamin D-dependent calcium-binding protein in rat skin, FEBS Lett. 111:285 (1980).CrossRefGoogle Scholar
  68. 68.
    J. A. Eisman, 1,25-Dihydroxyvitamin D3 receptor and role of 1,25-(OH)2D3 in human cancer cells, in: “Vitamin D,” R. Kumar, ed., Martinus Nijhoff, Boston (1984).Google Scholar
  69. 69.
    T. Suda, E. Abe, C. Miyaura, et al., Vitamin D in the differentiation of myeloid leukemia cells, in: “Vitamin D,” R. Kumar, ed., Martinus Nijhoff, Boston (1984).Google Scholar
  70. 70.
    S. Dokoh, C. A. Donaldson, and M. R. Haussler, Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: Correlation with the 1,25-dihydroxyvitamin D3 receptor, Cancer Res. 44:2103 (1984).Google Scholar
  71. 71.
    E. Abe, C. Miyaura, H. Sakagai, et al., Differentiation of mouse • myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3, Proc. Natl. Acad. Sci. U.S.A. 78:4990 (1981).CrossRefGoogle Scholar
  72. 72.
    H. Tanaka, E. Abe, C. Miyaura, et al., 1α,25-Dihydroxychole-calciferol and a human myeloid leukaemia cell line (HL-60). The presence of a cytosol receptor and induction of differentiation, Biochem. J. 204:713 (1982).Google Scholar
  73. 73.
    C. Miyaura, E. Abe, T. Kuribayashi, et al., 1α,25-Dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells, Biochem. Biophys. Res. Commun. 102:937 (1981).CrossRefGoogle Scholar
  74. 74.
    D. J. Mangelsdorf, H. P. Koeffler, C. A. Donaldson, et al., 1,25-Dihydroxyvitamin D3-induced differentiation in a human promyelocytic leukemia cell line (HL-60): Receptor-mediated maturation to macrophage-like cells, J. Cell Biol. 98:391 (1984).CrossRefGoogle Scholar
  75. 75.
    C. Miyaura, E. Abe, and T. Suda, Extracellular calcium is involved in the mechanism of differentiation of mouse myeloid leukemia cells (Ml) induced by 1α,25-dihydroxyvitamin D3, Endocrinology 115:1891 (1984).CrossRefGoogle Scholar
  76. 76.
    Y. Honma, M. Hozumi, E. Abe, et al., 1α,25-Dihydroxyvitamin D3 and 1 orhydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells, Proc. Natl. Acad. Sci. U.S.A. 80:201 (1983).CrossRefGoogle Scholar
  77. 77.
    R. C. Dodd, M. S. Cohen, S. L. Newman, et al., Vitamin D metabolites change the phenotype of monoblastic U937 cells, Proc. Natl. Acad. Sci. U.S.A. 80:7538 (1983).CrossRefGoogle Scholar
  78. 78.
    P. H. Reitsma, P. G. Rothberg, S. M. Astrin, et al., Regulation of myc gene expression in HL-60 leukaemia cells by a vitamin D metabolite, Nature 306:492 (1983).CrossRefGoogle Scholar
  79. 79.
    H. C. Freake, C. Marcocci, J. Iwasaki, et al., 1,25-Dihydroxyvitamin D3 specifically binds to a human breast cancer cell line (T47D) and stimulates growth, Biochem. Biophys. Res. Commun. 101:1131 (1981).CrossRefGoogle Scholar
  80. 80.
    R. J. Frampton, L. J. Suva, J. A. Eisman, et al., Presence of 1,25-dihydroxyvitamin D3 receptors in established human cancer cell lines in culture, Cancer Res. 42:1116 (1982).Google Scholar
  81. 81.
    R. J. Frampton, S. A. Omond, and J. A. Eisman, Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 metabolites, Cancer Res. 43:4443 (1983).Google Scholar
  82. 82.
    T. Kuroki and T. Suda, Similarity and dissimilarity between phorbol ester tumor promoters and 1α,25-dihydroxyvitamin D3, an active form of vitamin D3, In: “Proceedings (Cellular Interactions by Environmental Tumor Promoters),” H. Fujiki, E. Hecker, R. E. Moore, et al., eds., Center for Academic Publications, Japan (in press, 1984).Google Scholar
  83. 83.
    T. Kuroki, K. Chia, H. Hashiba, et al., Regulation of cell differentiation and tumor promotion by 1α,25-dihydroxyvitamin D3, in: “Carcinogenesis: A Comprehensive Survey, vol. 10,” E. Huberman and S. H. Barr, eds., Raven Press, New York (1985).Google Scholar
  84. 84.
    K. Chida, H. Hashiba, T. Suda, et al., Inhibition by 1α,25-dihydroxyvitamin D3 of induction of epidermal ornithine decarboxylase caused by 12-0-tetradecanoylphorbol-13-acetate and telocidin B, Cancer Res. 44:1387 (1984).Google Scholar
  85. 85.
    A. W. Wood, R. L. Chang, M.-T. Huang, et al., 1α,25-Dihydroxyvitamin D3 inhibits phorbol ester-dependent chemical carcinogenesis in mouse skin, Biochem. Biophys. Res. Commun. 116:605 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hector F. DeLuca
    • 1
  • Voula Ostrem
    • 1
  1. 1.Department of Biochemistry, College of Agricultural and Life SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations