Skip to main content
  • 265 Accesses

Abstract

Riboflavin deficiency diminishes the rate of growth of spontaneous tumors in experimental animals but enhances the carcinogenicity of specific drugs such as the azo dyes, which are degraded by a microsomal hydroxylase system requiring riboflavin. Human esophageal cancer has been epidemiologically associated with riboflavin deficiency, but the precise role of riboflavin in this tumor remains to be defined. Riboflavin nutriture influences epithelial integrity, tissue flavin concentrations, rates of prostaglandin biosynthesis, and glutathione metabolism, each of which may have implications for carcinogenesis.

Supported in part by the Clinical Nutrition Research Unit Grant 5 POl CA 29502 from the National Institutes of Health, National Cancer Institute Cancer Core Grant CA 08748, and grants from the Stella and Charles Guttman Foundation, the William H. Donner Foundation, National Dairy Council, Distilled Spirits Council of the United States, Alcoholic Beverage Medical Research Foundation, and General Foods Fund. Research was performed in the Sperry Corporation Nutrition Research Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

FAD:

flavin adenine dinucleotide

FMN:

flavin mononucleotide

References

  1. H. P. Morris and W. V. B. Robertson, Growth rate and number of spontaneous mammary carcinomas and riboflavin concentration of liver, muscle, and tumor of C3H mice as influenced by dietary riboflavin, J. Natl. Cancer Inst. 3:479 (1943).

    CAS  Google Scholar 

  2. H. P. Morris, Effects on the genesis and growth of tumors associated with vitamin intake, Ann. N.Y. Acad. Sci. 49:119 (1947).

    Article  CAS  Google Scholar 

  3. R. S. Rivlin, Riboflavin and cancer: A review, Cancer Res. 33:1977 (1973).

    CAS  Google Scholar 

  4. H. C. Stoerck and G. A. Emerson, Complete regression of lymphosarcoma implants following temporary induction of riboflavin deficiency in mice, Proc. Soc. Exp. Biol. Med. 70:703 (1949).

    Google Scholar 

  5. N. V. Aposhian and J. P. Lambooy, Retardation of growth of Walker rat carcinoma 256 by administration of diethyl riboflavin, Proc. Soc. Exp. Biol. Med. 78:197 (1951).

    CAS  Google Scholar 

  6. R. S. Rivlin, T. Homibrook, and M. Osnos, Effects of riboflavin deficiency upon concentrations of riboflavin, flavin mononucleotide and flavin adenine dinucleotide in Novikoff hepatoma in rats, Cancer Res. 33:3019 (1973).

    CAS  Google Scholar 

  7. Y. S. Kim, M. M. Aposhian, and J. P. Lambooy, The influence of homologs of riboflavin on the growth of Walker rat carcinoma 256, Cancer Res. 26:1344 (1956).

    Google Scholar 

  8. J. A. Miller and E. C. Miller, Carcinogenic azo dyes, Adv. Cancer Res. 1:339 (1953).

    Article  CAS  Google Scholar 

  9. S. Fass and R. S. Rivlin, Regulation of riboflavin-metabolizing enzymes in riboflavin deficiency, Am. J. Physiol. 217:988 (1969).

    CAS  Google Scholar 

  10. H. M. Nizami and F. Nizami, On the protective role of vitamin B2 in mice administered dimethylnitrosamine, J.P.M.A. 29:141 (1979).

    CAS  Google Scholar 

  11. M. Ohkoshi, H. Ohta, and M. Ito, Effect of vitamin B2 on tumorigenesis of 3-methylcholanthrene in the mouse skin, Gann 73:105 (1982).

    CAS  Google Scholar 

  12. C. S. Catz, M. R. Juchau, and S. J. Yaffe, Effects of iron, riboflavin and iodine deficiencies on hepatic drug-metabolizing enzyme systems, J. Pharmacol. Exp. Ther. 174:197 (1970).

    CAS  Google Scholar 

  13. M. Lane, F. E. Smith, and C. P. Alfrey, Jr., Experimental dietary and antagonist-induced human riboflavin deficiency, in: “Riboflavin,“ R. S. Rivlin, eds., Plenum Press, New York (1975).

    Google Scholar 

  14. M. Farhangi and E. F. Osserman, Myeloma with xanthoderma due to an IgG, monoclonal anti-flavin antibody, N. Engl. J. Med. 294:177 (1976).

    Article  CAS  Google Scholar 

  15. A. G. Fazekas, C. E. Menendez, and R. S. Rivlin, A competitive protein binding assay for urinary riboflavin, Biochem. Med. 9:167 (1974).

    Article  CAS  Google Scholar 

  16. J. Kmet, D. S. McLaren, and F. Siassi, Epidemiology of esophageal cancer with special reference to nutritional studies among the turkoman of Iran, in: “Role of Nutrition in Obesity and Disease,“ R. B. Tobin and M. A. Mehlman, eds., Pathotox Publishers, Park Forest South, I11. (1980).

    Google Scholar 

  17. D. I. Thurnham, P. Rathakette, K. M. Hambidge, et al., Riboflavin, vitamin A and zinc status in Chinese subjects in a high-risk area of esophageal cancer in China, Human Nutr. Clin. Nutr. 36C:337 (1982).

    Google Scholar 

  18. S. H. Lu and P. Lin, Recent research on the etiology of esophageal cancer in China, Z. Gastroenterol. 20:361 (1982).

    CAS  Google Scholar 

  19. R. G. Ziegler, L. E. Morris, W. J. Blot, et al., Esophageal cancer among black men in Washington, D.C. II. Role of nutrition, J. Natl. Cancer Inst. 67:1199 (1981).

    CAS  Google Scholar 

  20. S. J. Van Rensburg, A. S. Benade, E. F. Rose, et al., Nutritional status of African populations predisposed to esophageal cancer, Nutr. Cancer 4:206 (1983).

    Article  Google Scholar 

  21. E. L. Wynder and J. H. Fryer, Study of etiological factors in Plummer-Vinson syndrome, Ann. Intern. Med. 49:1106 (1958).

    CAS  Google Scholar 

  22. E. L. Wynder and U. E. Klein, The possible role of riboflavin deficiency in epithelial neoplasia. I. Epithelial changes in mice in simple deficiency, Cancer 18:167 (1965).

    Article  CAS  Google Scholar 

  23. G. Goldsmith, Riboflavin deficiency, in: “Riboflavin,“ R. S. Rivlin, ed., Plenum Press, New York (1975).

    Google Scholar 

  24. R. S. Rivlin, A. G. Fazekas, and R. Chaudhuri, Experimental approaches to the pathogenesis of cancer-induced cachexia, in: “Frontiers of Internal Medicine,“ S. H. Blondheim, ed., S. Karger, Basel (1975).

    Google Scholar 

  25. R. S. Rivlin, M. E. Shils, and P. Sherlock, Nutrition and cancer: Combined clinical and basic science seminar, Am. J. Med. 75:843 (1983).

    Article  CAS  Google Scholar 

  26. R. S. Rivlin, Riboflavin and cancer, in: “Riboflavin,“ R. S. Rivlin, ed., Plenum Press, New York (1975).

    Chapter  Google Scholar 

  27. N. J. Pelliccione, R. Karmali, R. S. Rivlin, et al., Effects of riboflavin deficiency upon prostaglandin biosynthesis in rat kidney, Prostaglandins Leukotrienes Med. 17:349 (1985).

    Article  CAS  Google Scholar 

  28. S. E. Olpin and C. J. Bates, Lipid metabolism in riboflavin-deficient rats. 1: Effect of dietary lipids on riboflavin status and fatty acid profiles, Br. J. Nutr. 47:577 (1982).

    Article  CAS  Google Scholar 

  29. S. A. Metz, J. R. McRae, and R. P. Robertson, Prostaglandins as mediators of paraneoplastic syndromes: Review and update, Metabolism 30:299 (1981).

    Article  CAS  Google Scholar 

  30. H. J. Powers and P. I. Thurnham, Riboflavin deficiency in man: Effect on haemoglobin and reduced glutathione in erythrocytes of different ages, Br. J. Nutr. 46:257 (1981).

    Article  CAS  Google Scholar 

  31. R. S. Rivlin, C. Menendez, and R. G. Langdon, Biochemical similarities between hypothyroidism and riboflavin deficiency, Endocrinology 83:461 (1968).

    Article  CAS  Google Scholar 

  32. A. M. Prentice and C. J. Bates, A biochemical evaluation of the erythrocyte glutathione reductase (EC 1.6.4.2) test for riboflavin status. I. Rate and specificity of response in acute deficiency, Br. J. Nutr. 45:37 (1981).

    Article  CAS  Google Scholar 

  33. R. F. Burk, M. J. Trumble, and R. A. Lawrence, Rat hepatic cytosolic glutathione-dependent enzyme protection against lipid peroxidation in the NADPH-microsomal lipid peroxidation system, Biochim. Biophys. Acta 618:35 (1980).

    CAS  Google Scholar 

  34. M. Younes and C. P. Siegers, Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo, Chem. Biol. Interact. 34:257 (1981).

    Article  CAS  Google Scholar 

  35. C. Carruthers and A. Baumler, Distribution of ligandin in normal and azocarcinogen-treated rat liver and azocarcinogen-induced liver tumors, Oncology 36:265 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Rivlin, R.S. (1986). Riboflavin. In: Poirier, L.A., Newberne, P.M., Pariza, M.W. (eds) Essential Nutrients in Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1835-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1835-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9025-4

  • Online ISBN: 978-1-4613-1835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics