Skip to main content

Choline Deficiency and Chemical Carcinogenesis

  • Chapter

Abstract

We have reviewed the current status of our knowledge concerning the biologic effects of dietary choline (lipotrope) deficiency in modifying chemical carcinogenesis in experimental animals and discussed its possible mechanisms. Choline deficiency produces various pathologic lesions, involving virtually every organ of the body, as a result of a decrease in phospholipid and acetylcholine synthesis and in the supply of labile methyl groups. The liver is the only organ in which a relationship has been consistently demonstrated between choline deficiency and chemically induced tumors. The deficient diet enhances the initiating potency of several carcinogens and acts as a strong cocarcinogen. Diet also exerts a strong promoting effect, though the possibility that it is a complete carcinogen cannot be ruled out. Phase I enzymes of the carcinogen metabolizing system are uniformly depressed by choline deficiency, but very little information is available regarding the effects of diet on Phase II enzymes that detoxify carcinogen metabolites. Possible modifications of carcinogen-induced DNA damage and their repair processes have not been adequately scrutinized. Solid evidence suggests that feeding a choline-deficient diet leads to enhanced liver cell proliferation, an inadequate supply of methyl groups for transmethylation reactions, and membrane lipid peroxidation. Induced cell proliferation and hypomethylation of DNA may alter the state of gene expression, including that of specific cellular oncogenes. Lipid peroxidation may alter the structure and function of membrane receptors related to liver cell growth or may directly damage cellular DNA. Thus these alterations, individually or in combination, could play a critical role in the diet-induced modification of chemical carcinogenesis.

Supported by Grant CA-26556 from the National Cancer Institute, Department of Health and Human Services.

We gratefully acknowledge the preparation of the original manuscript by Ms. Nancy L. Cannon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DEN:

diethylnitrosamine

References

  1. C. H. Best and M. E. Huntsman, The effects of the components of lecithine upon deposition of fat in the liver, J. Physiol. 75:405 (1932).

    CAS  Google Scholar 

  2. C. H. Best, J. M. Hershey, and M. E. Huntsman, The effect of lecithine on fat deposition in the liver of the normal rat, J. Physiol. 75:56 (1932).

    CAS  Google Scholar 

  3. R. E. Olson, Scientific contribution of Wendell H. Griffith to our understanding of the function of choline, Fed. Proc. 30:131 (1971).

    CAS  Google Scholar 

  4. C. C. Lucas and J. H. Ridout, “Progress in the Chemistry of Fats and Other Lipids,” Pergamon, Oxford (1967).

    Google Scholar 

  5. H. Shinozuka and S. L. Katyal, Pathology of choline deficiency, in: “Nutritional Pathology,” H. Sidransky, ed., Marcel Dekker, New York (1985).

    Google Scholar 

  6. J. Post, J. G. Benton, R. Breakstone, et al., The effects of diet and choline on fatty infiltration of the human liver, Gastroenterology 20:403 (1952).

    CAS  Google Scholar 

  7. D. H. Copeland and W. D. Salmon, The occurrence of neoplasms in the liver, lungs and other tissues of rats as a result of prolonged choline deficiency, Am. J. Pathol. 22:1059 (1946).

    CAS  Google Scholar 

  8. W. D. Salmon and P. M. Newberne, Occurrence of hepatomas in rats fed diets containing peanut meal as a major source of protein, Cancer Res. 23:571 (1963).

    CAS  Google Scholar 

  9. P. M. Newberne, W. W. Carlton, and G. N. Wogan, Hepatomas in rats and hepatorenal injury induced by peanut meal in Aspergillus flavus extract, Pathol. Vet. 1:105 (1964).

    Google Scholar 

  10. A. E. Rogers and P. M. Newberne, Dietary effects on chemical carcinogenesis in animal models for colon and liver tumors, Cancer Res. 35:3427 (1975).

    CAS  Google Scholar 

  11. A. E. Rogers and P. M. Newberne, Lipotrope deficiency in experimental carcinogenesis, Nutr. Cancer 2:104 (1982).

    Article  Google Scholar 

  12. H. C. Pitot and A. E. Sirica, The stages of initiation and promotion in hepatocarcinogenesis, Biochim. Biophys. Acta 605:191 (1980).

    CAS  Google Scholar 

  13. E. Farber, The multistep nature of cancer development, Cancer Res. 44:4217 (1984).

    CAS  Google Scholar 

  14. B. Lombardi, Effects of choline deficiency on rat hepatocytes, Fed. Proc. 30:139 (1971).

    CAS  Google Scholar 

  15. A. K. Ghoshal and E. Farber, The induction of resistant hepatocytes during initiation of liver carcinogenesis with chemicals in rats fed a choline deficient methionine low diet, Carcinogenesis 7:801 (1983).

    Article  Google Scholar 

  16. H. Shinozuka, M. A. Sells, S. L. Katyal, et al., Effects of a choline- devoid diet on the emergence of γ-glutamyltranspeptidase positive foci in the liver of carcinogen-treated rats, Cancer Res. 39:2515 (1979).

    CAS  Google Scholar 

  17. A. J. Demetris, Functional, morphological and biological analyses of acute stage methapyrilene liver carcinogenesis, Proc. Am. Assoc. Cancer Res. 24:54 (1983).

    Google Scholar 

  18. M. M. R. Kalengayi, G. Ronchi, and V. J. Desmet, Histochemistry of γ-glutamyltranspeptidase in rat liver during aflatoxin B1-induced carcinogenesis, J. Natl. Cancer Inst. 55:579 (1975).

    CAS  Google Scholar 

  19. H. C. Pitot, L. Barness, T. Goldworthy, et al., Biochemical characterization of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine, Nature 271:456 (1978).

    Article  CAS  Google Scholar 

  20. T. D. Pugh and S. Goldfarb, Quantitative histochemical and autoradiographic studies of hepatocarcinogenesis in rats fed 2-acetylamino-fluorene followed by phenobarbital, Cancer Res. 38:4450 (1978).

    CAS  Google Scholar 

  21. D. B. Solt, A. Medline, and E. Farber, Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis, Am. J. Pathol. 88:595 (1977).

    CAS  Google Scholar 

  22. K. Watanabe and G. M. Williams, Enhancement of rat hepatocellular- altered foci by the liver tumor promoter phenobarbital: Evidence that foci are precursors of neoplasms and promoter acts on carcinogen-induced lesions, J. Natl. Cancer Inst. 61:1311 (1978).

    CAS  Google Scholar 

  23. A. Columbano, S. Rajalakshmi, and D. S. R. Sarma, Requirement of cell proliferation for the initiation of liver carcinogenesis as assayed by three different procedures, Cancer Res. 41:2079 (1981).

    CAS  Google Scholar 

  24. T. B. Leonard, J. G. Dent, M. E. Graichen, et al., Comparison of hepatic carcinogen initiation-promotion system, Carcinogenesis 3:851 (1982).

    Article  CAS  Google Scholar 

  25. M. A. Sells, S. L. Katyal, S. Sell, et al., Induction of foci of altered γ-glutamyltranspeptidase-positive hepatocytes to hepatomas in rats fed a choline deficient diet, Br. J. Cancer 40:274 (1979).

    Article  CAS  Google Scholar 

  26. S. Takahashi, B. Lombardi, and H. Shinozuka, Progression of carcinogen induced foci of γ-glutamyltranspeptidase-positive hepatocytes to hepatomas in rats fed a choline deficient diet, Int. J. Cancer 29:445 (1982).

    Article  CAS  Google Scholar 

  27. R. Schulte-Hermann and W. Parzefall, Failure to discriminate initiation from promotion of liver tumors in a long term study with the phenobarbital type inducer β-hexachlorocyclohexane and role of sustained stimulation of hepatic growth and monooxygenases, Cancer Res. 41:4140 (1981).

    CAS  Google Scholar 

  28. O. H. Iverson and E. G. Astrup, The paradigm of two-stage carcinogenesis: A critical attitude, Cancer Invest. 2:51 (1984).

    Article  Google Scholar 

  29. A. K. Ghoshal and E. Farber, The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5:1367 (1984).

    Article  CAS  Google Scholar 

  30. Y. B. Mikol, K. L. Hoover, D. Creasia, et al., Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets, Carcinogenesis 4:1619 (1983).

    Article  CAS  Google Scholar 

  31. D. G. Goodman, J. M. Ward, R. A. Squire, et al., Neoplastic and nonneoplastic lesions in aging F344 rats, Toxicol. Appl. Pharmacol. 48:237 (1979).

    Article  CAS  Google Scholar 

  32. D. G. Goodman, J. M. Ward, and R. A. Squire, Neoplastic and nonneoplastic lesions in aging Osborne Mendel rats, Toxicol. Appl. Pharmacol. 55:433 (1980).

    Article  CAS  Google Scholar 

  33. H. A. Solleveld, J. K. Haseman, and E. E. McConnell, Natural history of body weight gain, survival and neoplasia in the F344 rat, J. Natl. Cancer Inst. 72:929 (1984).

    CAS  Google Scholar 

  34. J. M. Ward, Morphology of foci of altered hepatocytes and naturally occurring hepatocellular tumors in F344 rats, Virchows Arch. [Pathol. Anat.] 390:339 (1981).

    Article  CAS  Google Scholar 

  35. P. M. Newberne, Assessment of the hepatocarcinogenic potential of chemicals: Response of the liver, in: “Toxicology of the Liver,” G. L. Plaa and W. R. Hewitt, eds., Raven Press, New York (1982).

    Google Scholar 

  36. K. Ogawa, T. Onoe, and M. Takeuchi, Spontaneous occurrence of γ-glutamyltranspeptidase positive hepatocytic foci in 105-week-old Wistar and 72-week-old Fischer 344 male rats, J. Natl. Cancer Inst. 67:407 (1981).

    CAS  Google Scholar 

  37. T. C. Campbell, J. R. Hayes, and P. M. Newbeme, Dietary lipotropes, hepatic microsomal mixed-function oxidase activities and in vivo covalent binding of aflatoxin B1 in rats, Cancer Res. 38:4569 (1978).

    CAS  Google Scholar 

  38. T. C. Campbell and J. R. Hayes, Role of nutrition in the drug metabolizing enzyme system, Pharmacol. Rev. 26:171 (1974).

    CAS  Google Scholar 

  39. R. Saito, L. W. Estes, and B. Lombard, Reduced response to pheno-barbital by the liver of rats fed a choline-deficient diet, Biochim. Biophys. Acta 381:185 (1975).

    Article  CAS  Google Scholar 

  40. J. L. Suit, A. E. Rogers, and M. E. R. Jetten, Effects of diet on conversion of aflatoxin B1 to bacterial mutagens by rats in vivo and by rat hepatic microsome in vitro, Mutat. Res. 46:313 (1977).

    CAS  Google Scholar 

  41. T. V. Reddy, R. Ramanathan, H. Shinozuka, et al., Effects of dietary choline deficiency on the mutagenic activation of chemical carcinogens by rat liver fractions, Cancer Lett. 18:41 (1983).

    Article  CAS  Google Scholar 

  42. T. D. Boyer and D. Zakim, The effect of choline deficiency on the activity of a phosphatidylcholine-requiring enzyme: Activity and properties of UDP-glucuronyltransferase in choline-deficient rats, Biochem. Biophys. Res. Comm. 114:418 (1983).

    Article  CAS  Google Scholar 

  43. S. E. Abanobi, Initiation efficacy of methylmethanesulfonate (MMS), methylnitrosourea (MNU) versus patterns of DNA alkylation by MNU in adult rat liver, Proc. Am. Assoc. Cancer Res. 24:87 (1983).

    Google Scholar 

  44. J. V. Frei and T. Harsono, Increased susceptibility to low doses of a carcinogen of epidermal cells in stimulated DNA synthesis, Cancer Res. 27:1482 (1967).

    CAS  Google Scholar 

  45. A. W. Pound and H. R. Withers, The influence of some irritant chemicals and scarification on tumor initiation by urethane in mice, Br. J. Cancer 17:460 (1963).

    Article  CAS  Google Scholar 

  46. H. Shinozuka and A. C. Ritchie, Pretreatment with croton oil, DNA synthesis and carcinogenesis by carcinogen followed by croton oil, Int. J. Cancer 2:77 (1967).

    Article  CAS  Google Scholar 

  47. L. J. Cole and P. C. Nowell, Radiation carcinogenesis: The sequence of events, Science 150:1782 (1965).

    Article  CAS  Google Scholar 

  48. I. N. Chernozemski and G. P. Warwick, Liver regeneration and induction of hepatomas in B6AF mice by urethane, Cancer Res. 30:2685 (1970).

    CAS  Google Scholar 

  49. V. M. Craddock, Liver carcinomas induced in rats by single administration of dimethylnitrosamine after partial hepatectomy, J. Natl. Cancer Inst. 47:899 (1971).

    CAS  Google Scholar 

  50. R. K. Boutwell, Some biological aspects of skin carcinogenesis, Prog. Exp. Tumor Res. 4:207 (1964).

    CAS  Google Scholar 

  51. S. E. Abanobi, B. Lombardi, and H. Shinozuka, Stimulation of DNA synthesis and cell proliferation in the liver of rats fed a choline devoid diet and their suppression by phenobarbital, Cancer Res. 42:412 (1982).

    CAS  Google Scholar 

  52. J. H. Boss, E. Rosenmann, and G. Zajicek, Alphafetoprotein and liver cell proliferation in rats fed choline deficient diets. Z. Ernahrungswiss. 15:211 (1976).

    Article  CAS  Google Scholar 

  53. A. E. Rogers and R. A. MacDonald, Hepatic vasculature and cell proliferation in experimental cirrhosis, Lab. Invest. 14:1710 (1965).

    CAS  Google Scholar 

  54. A. K. Ghoshal, M. Ahluwali, and E. Farber, The rapid induction of liver cell death in rats fed a choline deficient methionine low diet, Am. J. Pathol. 113:309 (1983).

    CAS  Google Scholar 

  55. L. I. Giambarresi, S. L. Katyal, and B. Lombardi, Promotion of liver carcinogenesis in the rat by a choline-devoid diet. Role of liver necrosis and regeneration, Br. J. Cancer 46:825 (1982).

    Article  CAS  Google Scholar 

  56. E. Cayama, H. Tsuda, D. S. R. Sarma, et al., Initiation of chemical carcinogenesis requires cell proliferation, Nature 275:60 (1978).

    Article  CAS  Google Scholar 

  57. T. S. Ying, K. Enomoto, D. S. R. Sarma, et al., Effects of delays in the cell cycle in the induction of preneoplastic and neoplastic lesions in rat liver by 1,2-dimethylhydrazine, Cancer Res. 42:876 (1982).

    CAS  Google Scholar 

  58. P. M. Rao, K. Nagamine, R.-K. Ho, et al., Dietary orotic acid enhances the induction of γ-glutamyltranspeptidase positive foci in rat liver induced by chemical carcinogens, Carcinogenesis 4:1541 (1983).

    Article  CAS  Google Scholar 

  59. H. Shinozuka and B. Lombardi, Synergistic effect of a choline-devoid diet and phenobarbital in promoting the emergence of foci γ-glutamyltranspeptidase positive hepatocytes in the liver of carcinogen-treated rats, Cancer Res. 40:3846 (1980).

    CAS  Google Scholar 

  60. G. M. Cooper, Cellular transforming genes, Science 218:801 (1982).

    Article  Google Scholar 

  61. J. M. Bishop, Cellular oncogenes and retroviruses, Annu. Rev. Biochem. 52:301 (1983).

    Article  CAS  Google Scholar 

  62. M. Goyette, C. J. Peteropoulos, P. R. Shank, et al., Expression of cellular oncogenes during liver regeneration, Science 219:510 (1983).

    Article  CAS  Google Scholar 

  63. N. Fausto and P. R. Shank, Oncogene expression in liver regeneration and hepatocarcinogenesis, Hepatology 3:1016 (1983).

    Article  CAS  Google Scholar 

  64. R. Makino, K. Hayashi, and T. Sugimura, c-myc transcript is induced in rat liver at a very early stage of regeneration or by cyclo-heximide treatment, Nature 310:697 (1984).

    Article  CAS  Google Scholar 

  65. R. F. Doolittle, M. W. Hunkapeller, L. E. Hood, et al., Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet-derived factor, Science 221:275 (1983).

    Article  CAS  Google Scholar 

  66. M. D. Waterfield, G. T. Scrace, N. Whittle, et al., Platelet-derived growth factor is structurally related to putative transforming protein p28sis of simian sarcoma virus, Nature 304:35 (1983).

    Article  CAS  Google Scholar 

  67. L. A. Poirier, The role of methionine in carcinogenesis in vivo, this volume.

    Google Scholar 

  68. L. A. Poirier, P. H. Granthan, and A. E. Rogers, The effects of a marginally lipotrope-deficient diet on the hepatic levels of S-adenosylmethionine and the urinary metabolites of 2-acetylamino-fluorene in rats, Cancer Res. 37:744 (1977).

    CAS  Google Scholar 

  69. Y. B. Mikol and L. A. Poirier, An inverse correlation between hepatic ornithine decarboxylase and S-adenosylmethionine in rats, Cancer Lett. 13:195 (1981).

    Article  CAS  Google Scholar 

  70. Y. S. Buehring, L. A. Poirier, and E. L. R. Stokstad, Folate deficiency in the livers of diethylnitrosamine treated rats, Cancer Res. 36:2775 (1976).

    CAS  Google Scholar 

  71. G. L. Hyde, R. Rusten, and L. A. Poirier. A thin layer chromatographic method for the quantitative separation and estimation of S-adenosylmethionine and S-adenosylethionine in rat liver, Anal. Biochem. 106:35 (1980).

    Article  CAS  Google Scholar 

  72. N. Shivapurkar and L. A. Poirier, Decreased levels of S-adenosylmethionine in the livers of rats fed phenobarbital and DDT, Carcinogenesis 5:589 (1982).

    Article  Google Scholar 

  73. M. Ehrlich and R. Y. Wang, 5-Methylcytosine in eukaryotic DNA, Science 212:1350 (1981).

    Article  CAS  Google Scholar 

  74. W. Doerfler, DNA methylation and gene activity, Annu. Rev. Biochem. 52:93 (1983).

    Article  CAS  Google Scholar 

  75. J. Lapeyre, M. S. Walker, and F. F. Becker, DNA methylation and methylase levels in normal and malignant mouse hepatic tissues, Carcinogenesis 2:873 (1981).

    Article  CAS  Google Scholar 

  76. E. Flatau, E. Bogenmann, and P.A. Jones, Variable 5-methylcytosine levels in human tumor cell lines and fresh pediatric tumor explants, Cancer Res. 43:4901 (1983).

    CAS  Google Scholar 

  77. B. R. Krawisz and M. W. Lieberman, Methylation of deoxycytidine in replicating cells treated with ultraviolet radiation and chemical carcinogens, Carcinogenesis 5:1141 (1984).

    Article  CAS  Google Scholar 

  78. V. L. Wilson and P. A. Jones, Inhibition of DNA methylation by chemical carcinogens in vitro, Cell 32:239 (1983).

    Article  CAS  Google Scholar 

  79. A. J. Monserrat, A. K. Ghoshal, W. S. Hartroft, et al., Lipid peroxidation in the pathogenesis of renal necrosis in choline deficient rats, Am. J. Pathol. 55:163 (1969).

    CAS  Google Scholar 

  80. G. Ugazio, L. Gabriel, and E. Burdinor, Osservazioni sperimentale sui lipidi accumulati nil fegato di ratto alimentato con dieta colino priva, Sperimentale 117:1 (1967) (in Italian)

    CAS  Google Scholar 

  81. R. B. Wilson, N. S. Kula, P. M. Newberne, et al., Vascular damage and lipid peroxidation in choline deficient rats, Exp. Mol. Pathol. 18:357 (1973).

    Article  CAS  Google Scholar 

  82. W. Lijinsky, M. D. Reuber, and B. N. Blackwell, Liver tumors induced in rats by oral administration of the antihistaminic methapyrilene hydrochloride, Science 209:817 (1980).

    Article  CAS  Google Scholar 

  83. H. Shinozuka, S. E. Abanobi, and B. Lombard, Modulation of tumor promotion in liver carcinogenesis, Environ. Health Perspect. 50:163 (1983).

    Article  CAS  Google Scholar 

  84. A. B. DeAngelo and C. T. Garrett, Inhibition of development of preneoplastic lesions in the liver of rats fed a weakly carcinogenic environmental contaminant, Cancer Lett. 20:199 (1983).

    Article  CAS  Google Scholar 

  85. J. K. Reddy, D. L. Azarnoff, and C. D. Hignite, Hypolipidemic hepatic peroxisome proliferators form a novel class of chemical carcinogens, Nature 283:397 (1980).

    Article  CAS  Google Scholar 

  86. National Toxicology Program, “Carcinogenesis Bioassays of Di(2-ethylhexyl)phathalate,” Department of Health and Human Services Publication No. (NIH) 81-1773, Carcinogen Testing Program, National Toxicology Program, Research Triangle Park, N.C. (1981).

    Google Scholar 

  87. N. R. Bucher, U. Patel, and S. Cohen, Hormonal factors and liver growth, Adv. Enzym. Regul. 16:205 (1978).

    Article  CAS  Google Scholar 

  88. G. Michalopoulos, H. D. Cianciulli, A. R. Novotny, et al., Liver regeneration studies with rat hepatocytes in primary culture, Cancer Res. 42:4672 (1982).

    Google Scholar 

  89. T. H. Rushmore, Y. P. Lim, E. Farber, et al., Rapid lipid peroxidation in the nuclear fraction of rat liver induced by a diet deficient in choline and methionine, Cancer Lett. 24:251 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Shinozuka, H., Katyal, S.L., Perera, M.I.R. (1986). Choline Deficiency and Chemical Carcinogenesis. In: Poirier, L.A., Newberne, P.M., Pariza, M.W. (eds) Essential Nutrients in Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1835-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1835-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9025-4

  • Online ISBN: 978-1-4613-1835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics