Skip to main content

Role of Tryptophan in Carcinogenesis

  • Chapter
Essential Nutrients in Carcinogenesis

Abstract

This paper reviews some of the earlier experimental studies concerning the role that tryptophan plays in enhancing tumorigenesis induced by selected chemical carcinogens. For many years, tryptophan has been implicated in carcinogenesis of the bladder. The evidence regarding tryptophan’s effect on hepatic tumorigenesis is conflicting; an enhancing effect has been reported by some investigators, but a reduction in tumorigenesis has been reported by other workers. Some of the unique effects that tryptophan exerts upon the liver are reviewed. Also, experimental studies from our laboratory are reported in which we observed a potentiating effect of increased dietary tryptophan on the induction of γ-glutamyltranspeptidase-positive foci in liver when rats were fed a choline-supplemented diet but no potentiation was found when rats were fed a choline-deficient diet for 10 weeks. The results suggest that increased dietary tryptophan has a promoting effect on liver carcinogenesis as measured by the induction of γ-glutamyltranspeptidase-positive foci in the livers of rats exposed to diethylnitrosamine. The possible significance of these findings is reviewed.

Supported in part by Public Health Service grants CA-26557 from the National Cancer Institute and AM-27339 from the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases.

I gratefully acknowledge the collaborative efforts of E. Verney, C. N. Murty, D. S. R. Sarma, C. T. Garrett, M. Bongiorno, R. Hornseth, E. S. Robinson, and E. Meyers in the experimental work presented from this laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

NTPase:

nucleoside triphosphatase

Con A:

concanavalin A

FANFT:

N-[4-(5-nitro-2-furyl)-2-thiazoyl]formamide

BHBN:

N-butyl-N-(4-hydroxybutyl)-nitrosamine

Trp-P-1:

3-aminol,4-dimethyl-5H-pyrido [4,3-b]indole

Trp-P-2:

3-amino-methyl-5H-pyrido [4,3-b]indole

DEN:

diethylnitrosamine

GGT:

γ-glutamyltranspeptidase

CS:

choline supplemented

CD:

choline deficient

ODC:

ornithine decarboxylase

SAM:

S-adenosylmethionine

GSH:

glutathione

References

  1. F. G. Hopkins and S. W. Cole, On the proteid reaction of Adamkiewicz, with contributions to the chemistry of glycoxylic acid, Proc. R. Soc. 68:21 (1901).

    Google Scholar 

  2. T. B. Osborne and L. B. Mendel, Amino acids in nutrition and growth, J. Biol. Chem. 17:325 (1914).

    CAS  Google Scholar 

  3. W. C. Rose, G. F. Lambert, and M. J. Coon, The amino acid requirement of man. VII. General procedures: The tryptophan requirement, J. Biol. Chem. 211:815 (1954).

    CAS  Google Scholar 

  4. H. Sidransky, Tryptophan: Unique action by an essential amino acid, in: “Nutritional Pathology: Pathobiochemistry of Dietary Imbalances,” H. Sidransky, ed., Marcel Dekker, New York (1985).

    Google Scholar 

  5. R. T. Schimke, E. W. Sweeney, and C. M. Berlin, The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase, J. Biol. Chem. 240:322 (1965).

    CAS  Google Scholar 

  6. J. H. Kaplan and H. C. Pitot, The regulation of intermediary amino acid metabolism in animal tissues, in: “Mammalian Protein Metabolism, vol. 4,” H. N. Munro, ed., Academic Press, New York (1970).

    Google Scholar 

  7. F. J. Ballard and M. F. Hopgood, Phosphopyruvate carboxylase induction by L-tryptoρhan: Effects on synthesis and regulation of the enzyme, Biochem. J. 136:259 (1973).

    CAS  Google Scholar 

  8. A. Cihak, H. Inque, and H. C. Pitot, Studies on the induction and repression of enzymes in rat liver, Arch. Biochem. Biophys. 166:237 (1975).

    CAS  Google Scholar 

  9. P. Y. Chee and R. W. Swick, Effect of dietary protein and tryptophan on the turnover of rat liver ornithine aminotransferase, J. Biol. Chem. 251:1029 (1976).

    CAS  Google Scholar 

  10. S. A. Smith, F. A. O. Marston, A. J. Dickson, et al., Control of enzyme activities in rat liver by tryptophan and its metabolites, Biochem. Pharmacol. 28:1645 (1979).

    CAS  Google Scholar 

  11. H. Sidransky, D. S. R. Sarma, M. Bongiorno, et al., Effect of dietary tryptophan on hepatic polyribosomes and protein synthesis in fasted mice, J. Biol. Chem. 243:1123 (1968).

    CAS  Google Scholar 

  12. A. W. Pronezuk, S. Baliga, J. W. Triant, et al., Comparison of the effect of amino acid supply on hepatic polyribosome profiles in vivo and in vitro, Biochim. Biophys. Acta 157:204 (1968).

    Google Scholar 

  13. H. Sidransky, E. Verney, and D. S. R. Sarma, Effect of tryptophan on polyribosomes and protein synthesis in liver, Am. J. Clin. Nutr. 24:779 (1971).

    CAS  Google Scholar 

  14. A. J. F. Jorgensen and A. P. Majumdar, Bilateral adrenalectomy: Effect of a single tube feeding of tryptophan on amino acid incorporation into plasma albumin and fibrinogen in vivo, Biochem. Med. 13:234 (1975).

    Google Scholar 

  15. H. Sidransky, E. Verney, and C. N. Murty, Studies on the influence of tryptophan and related compounds on hepatic polyribosomes and protein synthesis in the rat, J. Nutr. 110:2231 (1980).

    CAS  Google Scholar 

  16. A. R. Henderson, The effect of feeding with a tryptophan-free amino acid mixture on rat liver magnesium ion-activated deoxyribonucleic acid-dependent ribonucleic acid polymerase, Biochem. J. 120:205 (1970).

    CAS  Google Scholar 

  17. A. P. N. Majumdar and A. J. F. Jorgensen, Response of well-fed adrenal-ectomized rats to tryptophan force-feeding on hepatic protein and RNA synthesis, Biochem. Med. 16:266 (1976).

    CAS  Google Scholar 

  18. J. Vesley and A. Cihak, Enhanced DNA-dependent RNA polymerase and RNA synthesis in rat liver nuclei after administration of L-tryptophan, Biochim. Biophys. Acta 204:614 (1970).

    Google Scholar 

  19. M. Oravec and A. Korner, Stimulation of ribosomal and DNA-like RNA synthesis by tryptophan, Biochim. Biophys. Acta 247:404 (1971).

    CAS  Google Scholar 

  20. C. N. Murty and H. Sidransky, The effect of tryptophan on mRNA in the livers of fasted mice, Biochim. Biophys. Acta 262:328 (1972).

    CAS  Google Scholar 

  21. C. N. Murty, E. Verney, and H. Sidransky, Effect of tryptophan on polyriboadenylic acid and polyriboadenylic acid-messenger ribonucleic acid, Lab. Invest. 34:77 (1976).

    CAS  Google Scholar 

  22. C. N. Murty, E. Verney, and H. Sidransky, Effect of tryptophan on RNA transport from nucleus to cytoplasm, Biochim. Biophys. Acta 474:117 (1977).

    CAS  Google Scholar 

  23. C. N. Murty, E. Verney, and H. Sidransky, In vivo and in vitro studies on the effect of tryptophan on translocation of RNA from nuclei of rat liver, Biochem. Med. 22:98 (1979).

    CAS  Google Scholar 

  24. C. N. Murty, E. Verney, and H. Sidransky, Effect of tryptophan on nuclear envelope nucleoside triphosphatase activity in rat liver, Proc. Soc. Exp. Biol. Med. 163:155 (1980).

    CAS  Google Scholar 

  25. C. N. Murty, R. Hornseth, E. Verney, et al., Effect of tryptophan on enzymes and proteins of hepatic nuclear envelopes of rats, Lab. Invest. 48:256 (1983).

    CAS  Google Scholar 

  26. H. Sidransky, C. N. Murty, and E. Verney, Nutritional control of protein synthesis: Studies relating to tryptophan-induced stimulation of nucleocytoplasmic translocation of mRNA in rat liver, Am. J. Pathol. 117:298 (1984).

    CAS  Google Scholar 

  27. W. F. Dunning, M. R. Curtis, and M. E. Maun, The effect of added dietary tryptophane on the occurrence of 2-acetylaminofluorene-induced liver and bladder cancer in rats, Cancer Res. 10:454 (1950).

    CAS  Google Scholar 

  28. E. Boyland, J. Harris, and E. S. Horning, The induction of carcinoma of the bladder in rats with acetamidofluorene, Br. J. Cancer 8:647 (1954).

    CAS  Google Scholar 

  29. J. L. Radomski, E. M. Glass, and W. B. Deichmann, Transitional cell hyperplasia in the bladders of dogs fed DL-tryptophan, Cancer Res. 31:1690 (1971).

    CAS  Google Scholar 

  30. M. Miyakawa and O. Yoshida, DNA synthesis of the urinary bladder epithelium in rats with long-term feeding of DL-tryptophan-added and pyridoxine-deficient diet, Gann 64:411 (1973).

    CAS  Google Scholar 

  31. J. L. Radomski, T. Radomski, and W. E. MacDonald, Cocarcinogenic interaction between DL-tryptophan and 4-aminobiphenyl or 2-naphthylamine in dogs, J. Natl. Cancer Inst. 58:1831 (1977).

    CAS  Google Scholar 

  32. M. Matsushima, The role of L-tryptophan’s promoting factor on tumorigenesis in the urinary bladder. 2. Urinary bladder carcinogenicity of FANFT (initiating factor) and L-tryptophan (promoting factor) in mice, Jpn. J. Urol. 68:731 (1977).

    CAS  Google Scholar 

  33. S. M. Cohen, M. Aral, J. B. Jacobs, et al., Promoting effect of saccharin and DL-tryptophan in urinary bladder carcinogenesis, Cancer Res. 39:1207 (1979).

    CAS  Google Scholar 

  34. S. Fukushima, G. H. Friedell, J. B. Jacobs, et al., Effect of L-tryptophan and sodium saccharin on urinary tract carcinogenesis initiated by by N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide, Cancer Res. 41:3100 (1981).

    CAS  Google Scholar 

  35. R. R. Brown and J. M. Price, Quantitative studies on metabolism of tryptophan in the urine of the dog, cat, and man, J. Biol. Chem. 219:985 (1956).

    CAS  Google Scholar 

  36. G. T. Bryan, Quantitative studies on the urinary excretion of indoxyl sulfate (indican) in man following administration of L-tryptophan and acetyl-L-tryptophan, Am. J. Clin. Nutr. 19:105 (1966).

    CAS  Google Scholar 

  37. J. M. Price, Bladder cancer, Can. Cancer Conf. 6:224 (1966).

    Google Scholar 

  38. G. T. Bryan, Role of tryptophan metabolites in urinary bladder cancer, Am. Ind. Hyg. Assoc. J. 30:27 (1969).

    CAS  Google Scholar 

  39. T. Kakizoe, T. Kawachi, and T. Sugimura, Agglutination of bladder cells by concanavalin A during the early phase of treatment of rats with N-butyl-N-(4-hydroxybutyl)nitrosamine, Cancer Res. 39:3353 (1979).

    CAS  Google Scholar 

  40. T. Kakizoe, H. Komatsu, T. Nijima, et al., Maintenance by saccharin of membrane alterations of rat bladder cells induced by subcarcinogenic treatment with bladder carcinogens, Cancer Res. 41:4702 (1981).

    CAS  Google Scholar 

  41. T. Kakizoe, H. Komatsu, T. Nijima, et al., Tryptophan as a promoter of bladder carcinogenesis in rats: Assay by measuring agglutination of bladder cells by concanavalin A, in: “Biochemical and Medical Aspects of Tryptophan Metabolism,” O. Hayaishi, Y. Ishimura, and R. Kido, eds., Elsevier/North Holland Biomedical Press, New York (1980).

    Google Scholar 

  42. T. Kakizoe, H. Komatsu, Y. Honma, et al., Detection of amino acids as possible promoters of bladder cancer in rats by measuring their enhancement of agglutination of bladder cells by concanavalin A, Gann 73:870 (1982).

    CAS  Google Scholar 

  43. W. F. Dunning and M. R. Curtis, The role of indole in incidence of 2-acetylaminofluorene-induced bladder cancer in rats, Proc. Soc. Exp. Biol. Med. 99:91 (1958).

    CAS  Google Scholar 

  44. R. Oyasu, D. A. Miller, J. H. McDonald, et al., Neoplasms of rat urinary bladder and liver; rats fed 2-acetylaminofluorene and indole, Arch. Pathol. 75:184 (1963).

    CAS  Google Scholar 

  45. R. Oyasu, H. A. Baltifora, R. Eisenstein, et al., Enhancement of tumorigenesis in the urinary bladder of rats by neonatal administration of 2-acetylaminofluorene, J. Natl. Cancer Inst. 40:377 (1968).

    CAS  Google Scholar 

  46. M. J. Allen, E. Boyland, C. E. Dukes, et al., Cancer of the urinary bladder induced in mice with metabolites of aromatic amines and tryptophan, Br. J. Cancer 11:212 (1957).

    CAS  Google Scholar 

  47. D. B. Clayson, J. W. Jull, and G. M. Bonser, The testing of ortho hydroxy-amines and related compounds by bladder implantation and a discussion of their structural requirements for carcinogenic activity, Br. J. Cancer 12:222 (1958).

    CAS  Google Scholar 

  48. G. E. Pipkin, J. U. Schlegel, R. Nishimura, et al., Inhibitory effect of L-ascorbate on tumor formation in urinary bladders implanted with 3-hydroxyorthranilic acid, Proc. Soc. Exp. Biol. Med. 131:522 (1969).

    CAS  Google Scholar 

  49. G. T. Bryan, The role of urinary tryptophan metabolites in the etiology of bladder cancer, Am. J. Clin. Nutr. 24:841 (1971).

    CAS  Google Scholar 

  50. L. E. Kuznezova, Mutagenic effect of 3-hydroxykynurenine and 3-hydroxyanthranilic acid, Nature 222:484 (1969).

    CAS  Google Scholar 

  51. T. Sugimura, T. Kawachi, M. Nagao, et al., Mutagenic princiρle(s) in tryptophan and phenylalanine pyrolysis products, Proc. Jpn. Acad. 53:58 (1977).

    CAS  Google Scholar 

  52. M. Nagao, T. Yahagi, T. Kawachi, et al., Mutagens in foods and especially pyrolysis products of protein, in “Progress in Genetic Toxicology,” D. Scott, B. A. Bridges, F. H. Sobels, eds., Elsevier/North Holland Biomedical Press, Amsterdam (1977).

    Google Scholar 

  53. C. Hashida, K. Nagayama, and N. Takemura, Induction of bladder cancer in mice by implanting pellets containing tryptophan pyrolysis products, Cancer Lett. 17:101 (1982).

    CAS  Google Scholar 

  54. B. N. Ames, J. McCann, and M. Yamasaki, Methods for detecting carcinogens and mutagens with Salmonella/mammalian-microsome mutagenicity test, Mutat. Res. 31:347 (1975).

    CAS  Google Scholar 

  55. I. de Waziers and F. Decloitre, Formation of mutagenic derivatives from tryptophan pyrolysis products (Trp P1 and Trp P2) by rat intestinal S9 fraction, Mutat. Res. 119:103 (1983).

    Google Scholar 

  56. S. Mita, Y. Yamazoe, T. Kamataki, et al., Metabolic activation of a tryptophan pyrolysis product, 3-amino-l-methyl-5H-pyrido-(4,3-b)-indole (Trρ-P-2) by isolated rat liver nuclei, Cancer Lett. 14:261 (1981).

    CAS  Google Scholar 

  57. Y. Yamazoe, K. Ishii, T. Kamataki, et al., Isolation and characterization of active metabolites of tryptophan-pyrolysate mutagen, Trp-P-2, formed by rat liver microsomes, Chem. Biol. Interact. 30:125 (1980).

    CAS  Google Scholar 

  58. S. Mita, K. Ishii, Y. Yamazoe, et al., Evidence for the involvement of N-hydroxylation of Trp-P-2 by cytochrome P-450 in the covalent binding to DNA, Cancer Res. 41:3610 (1981).

    CAS  Google Scholar 

  59. W. F. Dunning, M. R. Curtis, and M. E. Maun, The effect of added dietary tryptophane on the occurrence of diethylstilbestrol-induced mammary cancer in rats, Cancer Res. 10:319 (1950).

    CAS  Google Scholar 

  60. T. Kawachi, Y. Hirata, and T. Sugimura, Enhancement of N-nitrosodiethylamine hepatocarcinogenesis by L-tryρtoρhan in rats, Gann 59:523 (1968).

    CAS  Google Scholar 

  61. E. Okajima, T. Hiramatsu, Y. Motomiya, et al., Effect of DL-tryρtoρhan on tumorigenesis in the urinary bladder and liver of rats treated with nitrodibutylamine, Gann 62:163 (1971).

    CAS  Google Scholar 

  62. R. P. Evarts and C. A. Brown, Effect of L-tryρtoρhan on diethyl-nitrosamine and 3’-methyl-4-N-dimethylaminoazobenzene hepatocarcinogenesis, Food Cosmet. Toxicol. 15:431 (1977).

    CAS  Google Scholar 

  63. N. Matsukura, T. Kawachi, K. Wakabayashi, et al., Liver cancer and precancerous changes in rats induced by the basic fraction of tryptophan pyrolysate, Cancer Lett. 13:181 (1981).

    CAS  Google Scholar 

  64. N. Matsukura, T. Kawachi, K. Morino, et al., Carcinogenicity in mice of mutagenic compounds from a tryptophan pyrolysate, Science 213:346 (1981).

    CAS  Google Scholar 

  65. S. Hosaka, T. Matsushima, I. Hirono, et al., Carcinogenic activity of 3-amino-l-methyl-5H-ρyrido[4,3-b]indole (Trp-P-2), a pyrolysis product of tryptophan, Cancer Lett. 13:23 (1981).

    CAS  Google Scholar 

  66. T. Ishikawa, S. Takayama, T. Kitagawa, et al., In vivo experiments on tryptophan pyrolysis products, in: “Naturally Occurring Carcinogens-Mutagens and Modulators of Carcinogenesis,” E. C. Miller, I. Miller, T. Hirono, et al., eds., University Park Press, Baltimore (1979).

    Google Scholar 

  67. T. Ishikawa, S. Takayama, T. Kitagawa, et al., Induction of enzyme-altered islands in rat liver by tryptophan pyrolysis products, J. Cancer Res. Clin. Oncol. 95:221 (1979).

    CAS  Google Scholar 

  68. S. Tamano, H. Tsuka, M. Tatematsu, et al., Induction of γ-glutamyl transpeptidase positive foci in rat liver by pyrolysis products of amino acids, Gann 72:747 (1981).

    CAS  Google Scholar 

  69. M. Natake, G. Danno, T. Maeda, et al., Formation of DNA-damaging and mutagenic activity in the reaction systems containing nitrite and butylated hydroxyanisole, tryptophan or cysteine, J. Nutr. Sci. Vitaminol. 25:317 (1979).

    CAS  Google Scholar 

  70. T. Kada, K. Tutikawa, and Y. Sadaie, In vitro and host-mediated “rec-assay” procedures for screening chemical mutagens; and phloxine, a mutagenic red dye detected, Mutat. Res. 16:165 (1972).

    CAS  Google Scholar 

  71. T. Ohta, M. Isa, Y. Suzuki, et al., Formation of mutagens from tryptophan by the reaction with nitrite, Biochem. Biophys. Res. Commun. 100:52 (1981).

    CAS  Google Scholar 

  72. T. Ohta, S. Suzuki, and T. Kurechi, Formation of mutagen by the reaction of nitrite with several tryptophan decomposition products resulting from acid hydrolysis of protein, Mutat. Res. 111:33 (1983).

    CAS  Google Scholar 

  73. D. B. Solt, A. Medline, and E. Farber, Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis, Am. J. Pathol. 88:595 (1977).

    CAS  Google Scholar 

  74. H. C. Pitot and A. E. Sirica, The stages of initiation and promotion in hepatocarcinogenesis, Biochim. Biophys. Acta 605:191 (1980).

    CAS  Google Scholar 

  75. S. Takahashi, B. Lombardi, and H. Shinozuka, Progression of carcinogen-induced foci of γ-glutamyltranspeptidase-positive hepatocytes to hepatomas in rats fed a choline-deficient diet, Int. J. Cancer 29:445 (1982).

    CAS  Google Scholar 

  76. M. A. Sells, S. L. Katyal, S. Sell, et al., Induction of foci of altered, glutamyltranspeptidase-positive hepatocytes in carcinogen-treated rats fed a choline-def icient diet, Br. J. Cancer 40:274 (1979).

    CAS  Google Scholar 

  77. H. Shinozuka and B. Lombardi, Synergistic effect of choline-devoid diet and phenobarbital in promoting the emergence of γ-glutamyl-transpeptidase-positive hepatocytes in the liver of carcinogen-treated rats, Cancer Res. 40:3846 (1980).

    CAS  Google Scholar 

  78. H. Shinozuka, B. Lombardi, S. Sell, et al., Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline deficient diet, Cancer Res. 38:1092 (1978).

    CAS  Google Scholar 

  79. H. Sidransky, C. T. Garrett, C. N. Murty, et al., Influence of dietary tryptophan on the induction of γ-glutamyltranspeptidase positive foci in the liver of rats treated with hepatocarcinogen, Cancer Res. 45:4844 (1985).

    CAS  Google Scholar 

  80. A. J. Tobin, Evaluating the contribution of post-transcriptional processing to altered gene expression, Dev. Biol. 68:47 (1979).

    CAS  Google Scholar 

  81. N. T. Patel, M. Yoshida, V. Holoubek, In vitro incorporation of 3’-methyl-4-dimethylaminoazobenzene into liver nuclei and release of RNA from the nuclei, Cancer Res. 41:743 (1981).

    CAS  Google Scholar 

  82. R. N. Shearer and E. A. Smuckler, A search for gene expression in RNA of primary rat hepatomas, Cancer Res. 31:2104 (1971).

    CAS  Google Scholar 

  83. R. N. Shearer and E. A. Smuckler, Altered regulation of the transport of RNA from nucleus to cytoplasm in rat hepatoma cells, Cancer Res. 32:339 (1972).

    CAS  Google Scholar 

  84. D. E. Schumm, M. Hanausek-Walaszek, A. Yannarell, et al., Changes in nuclear RNA transport incident to carcinogenesis, Eur. J. Cancer 13:139 (1977).

    CAS  Google Scholar 

  85. E. A. Smuckler and M. Koplitz, Altered nuclear RNA transport associated with carcinogen intoxication in rats, Biochem. Biophys. Res. Commun. 55:499 (1973).

    CAS  Google Scholar 

  86. E. A. Smuckler and M. Koplitz, Thioacetamide-induced alterations in nuclear RNA transport, Cancer Res. 34:827 (1974).

    CAS  Google Scholar 

  87. E. A. Smuckler and M. Koplitz, Polyadenylic acid content and electrophoretic behavior of in vitro released RNAs in chemical carcinogenesis, Cancer Res. 36:881 (1976).

    CAS  Google Scholar 

  88. N. Hagan and R. McCauley, Effect of phenobarbitone on the nucleocyto-plasmic transport of riboadenylic acid in vitro, Biochem. J. 156:665 (1976).

    Google Scholar 

  89. H. Sidransky, E. Vemey, and C. N. Murty, Effect of elevated dietary tryptophan on protein synthesis in rat liver, J. Nutr. 111:1942 (1981).

    CAS  Google Scholar 

  90. E. Farber, Chemical carcinogenesis, N. Engl. J. Med. 305:1379 (1981).

    CAS  Google Scholar 

  91. D. H. Russell and S. H. Snyder, Amine synthesis in regenerating rat liver: Extremely rapid turnover of ornithine decarboxylase, Mol. Pharmacol. 5:253 (1969).

    CAS  Google Scholar 

  92. J. Janne, E. Holtta, and S. K. Guha, Polyamines in mammalian liver during growth and development, in: “Progress in Liver Disease, vol. 5,” H. Popper and F. Schaffner, eds., Grune & Stratton, New York (1976).

    Google Scholar 

  93. L. T. Giambarresi, S. L. Katyal, and B. Lombardi, Promotion of liver carcinogenesis in the rat by a choline-devoid diet. Role of liver necrosis and regeneration, Br. J. Cancer 46:825 (1982).

    CAS  Google Scholar 

  94. A. K. Ghoshal, M. Ahluwalia, and E. Farber, The rapid induction of liver cell death in rats fed a choline-deficient methionine low diet, Am. J. Pathol. 113:309 (1983).

    CAS  Google Scholar 

  95. P. M. Newberne and A. E. Rogers, Aflatoxin B1 carcinogenesis in lipotrope deficient rats, Cancer Res. 29:1965 (1969).

    Google Scholar 

  96. J. M. Ross, E. Rosenmann, and G. Zajicek, Alphafetoprotein and liver cell proliferation in rats fed choline-deficient diet, Z. Ernahrungswiss. 15:211 (1976).

    Google Scholar 

  97. S. E. Adanobi, B. Lombardi, and H. Shinozuka, Stimulation of DNA synthesis and cell proliferation in the liver of rats fed a choline-devoid diet and their suppression by phenobarbital, Cancer Res. 42:412 (1982).

    Google Scholar 

  98. A. Columbano, G. M. Leddi, P. M. Rao, et al., Dietary orotic acid, a selective growth stimulus for carcinogen altered hepatocytes in rats, Cancer Lett. 16:191 (1982).

    CAS  Google Scholar 

  99. P. M. Rao, K. Nagamine, R. K. Ho, et al., Dietary orotic acid enhances the incidence of gamma-glutamy1transferase positive foci in rat liver induced by chemical carcinogens, Carcinogenesis 4:1541 (1983).

    CAS  Google Scholar 

  100. C. Laurier, M. Tatematsu, P. M. Rao, et al., Promotion by orotic acid of liver carcinogenesis in rats initiated by 1,2-dimethyl-hydrazine, Cancer Res. 44:2186 (1984).

    CAS  Google Scholar 

  101. R. K. Boutwell, Biochemical mechanism of tumor promotion, in: “Carcinogenesis, vol. 2,” J. J. Slaga, A. Swak, and R. K. Boutwell, eds., Raven Press, New York (1978).

    Google Scholar 

  102. T. G. O’Brien, The induction of ornithine decarboxylase in an early, possibly obligatory, event in mouse skin carcinogenesis, Cancer Res. 36:2641 (1976).

    Google Scholar 

  103. M. Matsushima, S. Takano, E. Erturk, et al., Induction of ornithine decarboxylase activity in mouse urinary bladder by L-tryptophan and some of its metabolites, Cancer Res. 42:3587 (1982).

    CAS  Google Scholar 

  104. H. Sidransky, C. N. Murty, E. Myers, et al., Tryptophan-induced stimulation of hepatic ornithine decarboxylase activity in the rat, Exp. Mol. Pathol. 38:346 (1983).

    CAS  Google Scholar 

  105. E. Holtta and J. Janne, Ornithine decarboxylase activity and the accumulation of putrescine at early stages of liver regeneration, FABS Lett. 23:117 (1972).

    CAS  Google Scholar 

  106. D. H. Russell and C. C. Levy, Polyamine accumulation and biosynthesis in a mouse L1210 leukemia, Cancer Res. 31:248 (1971).

    CAS  Google Scholar 

  107. E. Cavia and T. E. Webb, The polyamine contest in two slow-growing hepatomas, Biochem. J. 129:223 (1972).

    CAS  Google Scholar 

  108. H. G. Williams-Ashman, G. L. Coppoc, and G. Weber, Imbalance in ornithine metabolism in hepatoma of different growth rates as expressed in formation of putrescine, spermidine and spermine, Cancer Res. 32:1924–1932 (1972).

    CAS  Google Scholar 

  109. C. V. Byus, M. Costa, I. G. Sipes, et al., Activation of 3’ :5’-cyclic AMP-dependent protein kinase and induction of ornithine decarboxylase as early events in induction of mixed function oxygenase, Proc. Natl. Acad. Sci. U.S.A. 73:1241 (1976).

    CAS  Google Scholar 

  110. J. W. Olsen and D. H. Russell, Prolonged ornithine decarboxylase induction in regenerating carcinogen-treated liver, Cancer Res. 40:4373 (1980).

    Google Scholar 

  111. Y. B. Mikol, H. Nawata, R. S. Yammoto, et al., Increased hepatic levels of ornithine decarboxylase in rats fed a chemically defined methyl-deficient diet, Fed. Proc. 38:865 (1979).

    Google Scholar 

  112. Y. B. Mikol and L. A. Poirier, An inverse correlation between ornithine decarboxylase and S-adenosylmethionine in rats, Cancer Lett. 13:195 (1981).

    CAS  Google Scholar 

  113. A. E. Rogers and P. M. Newberne, Dietary effects of chemical carcinogenesis in animal models for colon and liver tumors, Cancer Res. 35:3427 (1975).

    CAS  Google Scholar 

  114. H. Shinozuka, B. Lombardi, S. Sell, et al., Enhancement of DL-ethionine-induced liver carcinogenesis in rats fed a choline-devoid diet, J. Natl. Cancer Inst. 61:813 (1978).

    CAS  Google Scholar 

  115. B. Lombardi and H. Shinozuka, Enhancement of 2-acetylaminofluorene liver carcinogenesis in rats fed a choline-devoid diet, Int. J. Cancer 23:565 (1979).

    CAS  Google Scholar 

  116. A. K. Ghoshal and E. Farber, The induction of resistant hepatocytes during initiation of liver carcinogenesis with chemicals in rats fed a choline deficient methionine low diet, Carcinogenesis 4:801 (1983).

    CAS  Google Scholar 

  117. Y. B. Mikol, K. L. Hoover, D. Creasia, et al., Hepatocarcinogenesis in rats fed methyl-deficient, amino acid defined diets, Carcinogenesis 4:1619 (1983).

    CAS  Google Scholar 

  118. A. K. Ghoshal and E. Farber, The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens, Carcinogenesis 5:1367 (1984).

    CAS  Google Scholar 

  119. N. Tateishi, T. Higashi, A. Naruse, et al., Rat liver glutathione: Possible role as a reservoir of cysteine, J. Nutr. 107:51 (1977).

    CAS  Google Scholar 

  120. N. Tateishi, T. Higashi, A. Naruse, et al., Relative contributions of sulfur atoms of dietary cysteine and methionine to rat liver glutathione and proteins, J. Biochem. 90:1603 (1981).

    CAS  Google Scholar 

  121. D. J. Reed and P. W. Beatty, Biosynthesis and regulation of glutathione: Toxicological implications, Rev. Biochem. Toxicol. 2:213 (1980).

    CAS  Google Scholar 

  122. A. Meister, Metabolism and functions of glutathione, Trends Biochem. Sci. 6:231 (1981).

    CAS  Google Scholar 

  123. N. Kaplowitz, The importance and regulation of hepatic glutathione, Yale J. Biol. Med. 54:497 (1981).

    CAS  Google Scholar 

  124. P. B. McCay, D. D. Gibson, K. Fong, et al., Effect of glutathione peroxidase activity on lipid peroxidation in biological membranes, Biochim. Biophys. Acta 431:459 (1976).

    CAS  Google Scholar 

  125. G. Ugazio, L. Gabriel, and E. Burdino, Osservatzioni sperimentali sui lipidi accumulati nei fegato di ratoo alimentato con dieta colinopriva, Sperimentale 117:1 (1967) (in Italian).

    CAS  Google Scholar 

  126. R. B. Wilson, N. S. Kula, P. M. Newberne, et al., Vascular damage and lipid peroxidation in choline deficient rats, Exp. Mol. Pathol. 18:357 (1973).

    CAS  Google Scholar 

  127. T. H. Rushmore, Y. P. Lim, E. Farber, et al., Rapid lipid peroxidation in the nuclear fraction of rat liver induced by a diet deficient in choline and methionine, Cancer Lett. 24:251 (1984).

    CAS  Google Scholar 

  128. M. I. R. Perera, A. J. Demetris, S. L. Katyal, et al., Lipid peroxidation as a possible underlying mechanism of liver tumor promotion by a choline-deficient diet, Proc. Am. Assoc. Cancer Res. 25:141 (1984).

    Google Scholar 

  129. H. Shinozuka, S. Takabashi, B. Lombardi, et al., Effects of varying the fat content of a choline-devoid diet on promotion of the emergence of γ-glutamyltranspeptidase positive foci in the liver of carcinogen-treated rats, Cancer Lett. 16:43 (1982).

    CAS  Google Scholar 

  130. A. Kitahara, T. Yamazaki, T. Ishikawa, et al., Changes in activities of glutathione peroxidase and glutathione reductase during chemical hepatocarcinogenesis in the rat, Gann 74:649 (1983).

    CAS  Google Scholar 

  131. K. Sato, K. Satoh, A. Kitahara, et al., Identification of the placental form of glutathione S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis, Proc. Am. Assoc. Cancer Res. 25:7 (1984).

    Google Scholar 

  132. M. Akluwalia and E. Farber, Alterations in glutathione status in early hyperplastic liver nodules, Proc. Am. Assoc. Cancer Res. 25:15 (1984).

    Google Scholar 

  133. C. B. Pickett, J. B. Williams, A. Y. H. Lu, et al., Elevated levels of rat liver glutathione S-transferase and DT-diaphorase mRNase in persistent hepatocyte nodules, Proc. Am. Assoc. Cancer Res. 25:7 (1984).

    Google Scholar 

  134. I. de Waziers and F. Decloitre, Effect of glutathione and undine5’-diphosphoglucuronic acid on the mutagenicity of tryptophan pyrolysis products (Trp-P-1 and Trp-P-2) by rat-liver and intestine S9 fraction, Mutat. Res. 139:15 (1984).

    Google Scholar 

  135. L. W. Wattenberg, Inhibitors of chemical carcinogenesis, in: “Environmental Carcinogenesis,” P. Emmelot and E. Kriek, eds., Elsevier/North Holland Biomedical Press, Amsterdam (1979).

    Google Scholar 

  136. J. A. Miller and E. C. Miller, The metabolic activation of carcinogenic aromatic amines and amides, Prog. Exp. Tumor Res. 11:273 (1969).

    CAS  Google Scholar 

  137. R. Oyasu, H. Sumie, and H. E. Burg, Neoplasms of urinary bladders of hamsters treated with 2-acetylaminofluorene and indole, J. Natl. Cancer Inst. 45:853 (1970).

    CAS  Google Scholar 

  138. R. P. Evarts and M. H. Mostafa, The effect of L-tryptophan and certain other amino acids on liver nitrodimethylamine demethylase activity, Food Cosmet. Toxicol. 16:585 (1978).

    CAS  Google Scholar 

  139. R. P. Evarts and M. H. Mostafa, Effect of indole and tryptophan on cytochrome P-450, dimethylnitrosamine demethylase and arylhydro-carbon hydroxylase activities, Biochem. Pharmacol. 30:517 (1981).

    CAS  Google Scholar 

  140. A. J. F. Jorgensen and A. P. N. Majumdar, Influence of tryptophan on the levels of hepatic microsomal cytochrome P-450 in well-fed normal, adrenalectomized and phenobarbital-treated rats, Biochim. Biophys. Acta 444:453 (1976).

    CAS  Google Scholar 

  141. L. Wattenberg, Chemoprevention of cancer, Cancer Res. 45:1 (1985).

    CAS  Google Scholar 

  142. H. Sidransky and E. Verney, Effect of diet and tryptophan on hepatic polyribosomal disaggregation due to actinomycin, Exp. Mol. Pathol. 17:233 (1972).

    CAS  Google Scholar 

  143. H. Sidransky, E. Verney, and C. N. Murty, Effect of tryptophan on hepatic polyribosomes and protein synthesis in rats treated with carbon tetrachloride, Toxicol. Appl. Pharmacol. 39:295 (1977).

    CAS  Google Scholar 

  144. H. Sidransky, E. Verney, and D. S. R. Sarma, Effects of tryptophan on hepatic polyribosomal disaggregation due to ethionine, Proc. Soc. Exp. Biol. Med. 140:633 (1972).

    CAS  Google Scholar 

  145. H. Sidransky, E. Verney, and C. N. Murty, Effect of tryptophan on hepatic polyribosomal disaggregation due to hypertonic sodium chloride, Lab. Invest. 34:291 (1976).

    CAS  Google Scholar 

  146. D. S. R. Sarma, M. Bongiorno, E. Verney, et al., Effect of oral administration of tryptophan or water on hepatic polyribosomal disaggregation due to puromycin, Exp. Mol. Pathol. 19:23 (1973).

    CAS  Google Scholar 

  147. H. Sidransky, C. N. Murty, and E. Verney, Effect of tryptophan on the inhibitory action of selected hepatotoxic agents on hepatic protein synthesis, Exp. Mol. Pathol. 37:305 (1982).

    CAS  Google Scholar 

  148. M. A. Rothschild, M. Oratz, J. Morgelli, et al., Alcohol-induced depression of albumin synthesis: Reversal by tryptophan, J. Clin. Invest. 50:1812 (1971).

    CAS  Google Scholar 

  149. M. A. Rothschild, M. Oratz, and S. S. Schreiber, Effect of tryptophan on the hepatotoxic effects of alcohol and carbon tetrachloride, Trans. Assoc. Am. Physiol. 84:313 (1971).

    CAS  Google Scholar 

  150. D. H. Copeland and W. D. Salmon, The occurrence of neoplasms in the liver, lungs, and other tissues of rats as a result of prolonged choline deficiency, Am. J. Pathol. 22:1059 (1946).

    CAS  Google Scholar 

  151. H. Sidransky and E. Verney, Influence of orotic acid on liver tumorigenesis in rats ingesting ethionine, N-2-fluorenylacetamide, and 3’-methyl-dimethyl-aminoazobenzene, J. Natl. Cancer Inst. 44:1201 (1970).

    CAS  Google Scholar 

  152. C. Peraino, R. J. M. Fry, and E. F. Staffeldt, Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene, Cancer Res. 31:1506 (1971).

    CAS  Google Scholar 

  153. L. W. Wattenberg, W. D. Loub, L. K. Lam, et al., Dietary constituents altering the responses to chemical carcinogens, Fed. Proc. 35:1327 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Sidransky, H. (1986). Role of Tryptophan in Carcinogenesis. In: Poirier, L.A., Newberne, P.M., Pariza, M.W. (eds) Essential Nutrients in Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1835-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1835-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9025-4

  • Online ISBN: 978-1-4613-1835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics