Advertisement

Pressure Induced Phase Transition of an Oil External Microemulsion

  • Mahn Won Kim
  • J. Bock
  • John S. Huang
  • W. Gallagher

Abstract

The critical phenomenon of a c-component oil external microemulsion system containing pure normal decane, double distilled water, and an anionic surfactant, sodium dimethyl hexyl sulfosuccinate, was studied as a function of applied external pressure for the first time using laser light scattering. It was found that the divergence of the scattered intensity and static correlation length can be described in terms of the critical exponents as a function of ΔP = |P-Pc|. Furthermore, the critical exponents of ΔP, v and γ associated with the scattered intensity and static correlation length respectively, are the same as those obtained from previous studies with other thermodynamic variables, i.e. temperature, carbon chain length of oil, etc. Thus pressure can induce a critical type phase transition in this oil external microemulsion. Prior studies have shown that the attractive potential between droplets is most likely the driving force for the critical points of this microemulsion, and that increasing the alkane number of the oil increases the attractive potential. The pressure, in a sense, contributes to this attractive force by increasing the density of the oil, i.e., increasing the effective alkane number. Furthermore, we have measured the thermal pressure coefficient, (dP/dT)v, to begin to understand the thermodynamic properties of this oil external microemulsion.

Keywords

Critical Exponent Microemulsion System Laser Light Scattering Attractive Potential Critical Isochore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Huang and M. W. Kim, Phys. Rev. Lett. 47, 1463 (1981).Google Scholar
  2. 2.
    M. Corti, V. Degiorgio, and M. Zulauf, Phys. Rev. Lett. 48, 1617 (1982).CrossRefGoogle Scholar
  3. 3.
    J. C. Lang and D. Morgan, J. Chem. Phys. 73, 5849 (1980).CrossRefGoogle Scholar
  4. 4.
    G. Fourche, A. M. Bellocq, and S. Brunetti, J. Colloid Interface Sci. 89 427 (1982).CrossRefGoogle Scholar
  5. 5.
    A. M. Cazabat, D. Langevin, J. Meunier, and A. Pouchelon, J. Phys. (Paris) Lett. 43, 89 (1982).Google Scholar
  6. 6.
    R. B. Dorshow, F. de Bizzaccarini, C. A. Bunton, and D. F. Nicoli, Phys. Rev. Lett. 47, 1336 (1981).CrossRefGoogle Scholar
  7. 7.
    D. Roux, and A. M. Bellocq, Phys. Rev. Lett. 52, 1895, (1984).CrossRefGoogle Scholar
  8. 8.
    J. S. Huang and M. W. Kim, Soc. Pet. Eng. J 202, (1984).Google Scholar
  9. 9.
    M. Kotlarchyk, S. H. Chen, J. S. Huang, and M. W. Kim, Phys. Rev. A, 29, 2054 (1984).CrossRefGoogle Scholar
  10. 10.
    L. S. Ornstein and F. Zernike, Proc. Sect. Sci. J. Med. Akad. Wet. 17, 793 (1914).Google Scholar
  11. 11.
    J. S. Rowlinson, “Liquids and Liquid Mixture”, Butterworth & Co. Ltd. (1969).Google Scholar
  12. 12.
    Robert B. Griffiths and John C. Wheeler, Phys. Rev. A2 1047 (1970).Google Scholar
  13. 13.
    K. Kawasaki, Ann. Phys. N.Y. 61, 1 (1970).CrossRefGoogle Scholar
  14. 14.
    M. W. Kim and J. S. Huang, Phys. Rev. B. 26 2703, (1982).CrossRefGoogle Scholar
  15. 15.
    J. S. Huang, S. Safran, M. W. Kim, G. S. Grest, M. Kotlarchyk and N. Quirke, Phys. Rev. Lett., 53, 592, (1984).CrossRefGoogle Scholar
  16. 16.
    J. S. Huang and M. W. Kim, Proceedings for the Varenna Summer School, Varenna, Italy (1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Mahn Won Kim
    • 1
  • J. Bock
    • 1
  • John S. Huang
    • 1
  • W. Gallagher
    • 1
  1. 1.Exxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations