Skip to main content

The Role of Silicone Surfactants in Coal Dewatering

  • Chapter
Surfactants in Solution
  • 260 Accesses

Abstract

Silicone surfactants are capable of marked lowering of the surface tension of water, superior to that of hydrocarbon-based surfactants. These silicone surfactants are also readily adsorbed at a variety of hydrocarbon/water interfaces. These attributes suggest the use of such surfactants in coal dewatering, an aspect of coal processing that is growing in importance. the interaction of several silicone surfactants based both on the poly(ethylene oxide) (nonionic) and the quaternary ammonium salt (cationic) hydrophile was studied using various coals. Surface tensions, contact angles and zeta potentials were measured. These techniques relate to the three commonly proposed mechanisms for coal dewatering: -

  1. i/

    Reduced capillary forces caused by aqueous surface tension reduction

  2. ii/

    Dewetting produced by hydrophobing of the coal

  3. iii/

    Increased permeability resulting from flocculation of coal particles

All of these mechanisms appear to be significant in the dewatering process. Silicone surfactants tend to hydrophilize the coal rather than hydrophobe it. This detracts from the dewatering effect and the best silicone coal dewatering surfactants are those that have adequate surface tension lowering ability without too marked a detrimental water contact angle decrease. Silicone surfactants have only a minor effect on the flocculation aspect. Flocculation is best effected by other materials such as polyacrylamides or silicone polymer emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Owen, Ind. Eng. Chem. Prod. Res. Dev., 19, 97 (1980).

    Article  CAS  Google Scholar 

  2. P. C. Painter, R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn and A. Davis, in “Coal and Coal Products: Analytical Characterization Techniques,” E. L. Fuller, Jr., Editor, ACS Symp. Ser. 205, 47 (1982).

    Article  CAS  Google Scholar 

  3. R. G. Ruberto and D. C. Cronauer, in “Organic Chemistry of Coal”, J. W. Larsen, Editor, ACS Symp. Ser. 71, 50 (1978).

    Article  CAS  Google Scholar 

  4. T. Mielecki and G. Kurzeja, Prace GIG, B-253, 3 (1960).

    Google Scholar 

  5. V. R. Gray, J. Inst. Fuel, 31, 96 (1958).

    CAS  Google Scholar 

  6. M. J. Owen and T. J. Swihart, Fuel, 63, 129 (1984).

    Article  CAS  Google Scholar 

  7. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).

    Article  CAS  Google Scholar 

  8. B. Kanner, W. G. Reid and I. H. Peterson, Ind. Eng. Chem. Prod. Res. Dev., 6, 88 (1967).

    Article  CAS  Google Scholar 

  9. T. H. Lane and J. L. Speier, J. Org. Chem., 41, 2714 (1976).

    Article  CAS  Google Scholar 

  10. E. W. Gieseke, Trans. AIME, 223, 352 (1962).

    CAS  Google Scholar 

  11. J. O. Glanville and J. P. Wightman, Fuel, 58, 819 (1979).

    Article  CAS  Google Scholar 

  12. N. K. Brown, R. P. Klepper and Y. Naide, “Preliminary Engineering and Economic Evaluation of Coal Preparation Concepts: Liquid/Solid Separation” EPRI Report of Project No. 1030-2, Nov. 1979. Obtainable from EPRI Research Reports Center, Box 50490, Palo Alto, CA, 94303.

    Google Scholar 

  13. J. O. Glanville and L. H. Haley, Colloids Surfaces, 4, 213 (1982).

    Article  CAS  Google Scholar 

  14. R. M. Horsley and H. G. Smith, Fuel, 30, 54 (1951).

    CAS  Google Scholar 

  15. J. L. Schwendeman, S-M. Sun, I. O. Salyer and A. L. Wurstner, Ann. N. Y. Acad. Sci., 200, 765 (1972).

    Article  CAS  Google Scholar 

  16. J. Coca, J. L. Bueno and H. Sastre, Fuel, 61, 166 (1982).

    Article  CAS  Google Scholar 

  17. B. K. Parekh and F. F. Aplan, in “Recent Developments in Separation Science”, N. N. Li, Editor, CRC, 4, 107 (1978).

    CAS  Google Scholar 

  18. J. W. Larsen, L. Kennard and E. W. Kummerle, Fuel, 57 309 (1978).

    Article  CAS  Google Scholar 

  19. J. J. Kosman and R. L. Rowell, Colloids Surfaces, 4, 245 (1982).

    Article  CAS  Google Scholar 

  20. W. W. Wen and S. C. Sun, Trans. AIME, 262, 174 (1977).

    CAS  Google Scholar 

  21. J. A. L. Campbell and S. C. Sun, Trans. AIME, 247, 111 (1970).

    CAS  Google Scholar 

  22. K. Esumi, K. Meguro and H. Honda, Bull. Chem. Soc. Japan, 55, 3021 (1982).

    Article  CAS  Google Scholar 

  23. M. J. Owen, “Mechanism of Fine Coal Dewatering by Silicone Additives”, EPRI Report of Project No. 1030-20, June 1984. Obtainable from EPRI Research Reports Center, Box 50490, Palo Alto, CA, 94303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Flaningam, O.L., Owen, M.J., Romenesko, D.J., Zombeck, A. (1986). The Role of Silicone Surfactants in Coal Dewatering. In: Mittal, K.L., Bothorel, P. (eds) Surfactants in Solution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1833-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1833-0_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9024-7

  • Online ISBN: 978-1-4613-1833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics