Skip to main content

Theory of Shape Transitions in Microemulsions

  • Chapter
Book cover Surfactants in Solution

Abstract

We construct the mean-field phase diagram for microemulsion shapes in the dilute globule limit. The phenomenological bending energy of a globule is motivated by a microscopic model of the elasticity of the surfactant layer. We find spherical, lamellar and cylindrical phases to be stable. In the novel cylindrical phase, the cylinders are rigid for lengths smaller than a persistence length ξc; for lengths larger than ξc‚ the cylinders can behave like polymers in solution. As the persistence length and the degree of polymerization depend on the concentration of dispersed phase, these cylindrical microemulsions should exhibit interesting concentration dependence for the radius of gyration and viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a general survey see “surfactants in Solution”,ed. by K. Mittal and B. Lindman, Plenum Press, New York, 1984.

    Google Scholar 

  2. Y. Talmon and S. Prager, J. Chem. Phys. 69, 2984 (1978).

    Article  CAS  Google Scholar 

  3. J. Jouffroy, P. Levinson and P.G. De Gennes, J. Physique 43, 1241 (1982)

    Article  CAS  Google Scholar 

  4. B. Widom, J. Chem. Phys. 81, 1030 (1984).

    Article  CAS  Google Scholar 

  5. P. G. De Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).

    Article  Google Scholar 

  6. L. Auvray, J.P. Cotton, R. Ober and C. Taupin, J. Physique 45, 713 (1984).

    Article  Google Scholar 

  7. W. Helfrich, Z. Naturforsch, 28, 6693 (1973).

    Google Scholar 

  8. S. A. Safran, J. Chem. Phys. 78, 2073 (1983) and Ref. 1, Vol. 3, p. 1781.

    Article  CAS  Google Scholar 

  9. S. A. Safran, L. A. Turkevich and P. A. Pincus, J. Physique Lett. 45, L69 (1984).

    Article  Google Scholar 

  10. P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young and M. C. Carey, J. Phys. Chem. 84, 1044 (1980).

    Article  CAS  Google Scholar 

  11. J. Appell, G. Porte and Y. Poggi, J. Colloid Interface Sci. 87, 492 (1982)

    Article  CAS  Google Scholar 

  12. J. Appell, G. Porte and Y. Poggi,J. Physique Lett. 44, 689 (1983).

    Article  Google Scholar 

  13. G. Porte, J. Phys. Chem. 87, 3541 (1983).

    Article  CAS  Google Scholar 

  14. S. J. Candau, E. Hirsch and R. Zana, J. Physique (in press), and E. Hirsch, S. J. Candau and R. Zana, these proceedings.

    Google Scholar 

  15. S. Marcelja, Biochim. Biophys. Acta 367, 165 (1974).

    Article  CAS  Google Scholar 

  16. A. G. Petrov and A. Derzhanski, J. Physique Colloq. 37, C3–155 (1976).

    Google Scholar 

  17. A. G. Petrov, M. D. Mitov and A. Derzhanski, Phys. Letts. 65A, 374 (1978).

    Article  CAS  Google Scholar 

  18. W. Helfrich, Z. Naturforsch. 28C, 693 (1973)

    Google Scholar 

  19. F. C. Frank, Discuss. Faraday Soc. 25, 19 (1958).

    Article  Google Scholar 

  20. L. A. Turkevich and S. A. Safran, to be published.

    Google Scholar 

  21. A factor 9/2 was inadvertently dropped in our previous calculation.

    Google Scholar 

  22. S. A. Safran and L. A. Turkevich, Phys. Rev. Lett. 50, 1930 (1983)

    Article  CAS  Google Scholar 

  23. S.A. Safran, L.A. Turkevich, and J.S. Huang, these proceedings.

    Google Scholar 

  24. Due to the change in the endcap energy18 the cylinders should be longer than our previous estimates.

    Google Scholar 

  25. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976)

    Article  Google Scholar 

  26. W. Gelbart, A. Ben-Shaul, W. McMullen and A. Masters, J. Chem. Phys. 88, 8861 (1984).

    Google Scholar 

  27. S. Ikeda, J. Phys. Chem. 88, 2144 (1984).

    Article  CAS  Google Scholar 

  28. J. C. Wheeler and P. Pfeuty, Phys. Rev. A 24, 2050, (1981).

    Article  Google Scholar 

  29. For a treatment of such dynamical fluctuations, see S. Ljunggren and J. C. Eriksson, J. Chem. Soc., Faraday Trans. 2, 80, 489 (1984).

    Article  CAS  Google Scholar 

  30. L. Auvray, J. Physique (in press).

    Google Scholar 

  31. L. Onsager, Ann. N.Y. Acad. Sci. 51 , 627 (1949)

    Article  CAS  Google Scholar 

  32. D. W. Schaefer, J.-F. Joanny and P. Pincus, MacromoTecules 13 , 1280 (1980).

    Article  CAS  Google Scholar 

  33. S. F. Edwards, Proc. Phys. Soc. 92, 9 (1967).

    Article  CAS  Google Scholar 

  34. G. Porte, J. Marignan, J. Appell, Y. Poggi and G. Maret, this Symposium Paper No. 20C1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Turkevich, L.A., Safran, S.A., Pincus, P.A. (1986). Theory of Shape Transitions in Microemulsions. In: Mittal, K.L., Bothorel, P. (eds) Surfactants in Solution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1833-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1833-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9024-7

  • Online ISBN: 978-1-4613-1833-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics