Dynamics of Organized Assemblies in Solution

Abstract

A quantitative treatment of the dynamics of micelles in aqueous solutions was given in 1974 by Aniansson and Wall. The validity of this treatment has been checked in a large number of studies from which a wealth of information concerning the dynamics of micellar systems has been obtained. After briefly recalling the main features of the theory of Aniansson and Wall, this paper reviews (i) the results concerning the kinetics of the exchange of the surfactant between micelles and the bulk, and of the micelle formation- breakdown in aqueous solution; (ii) the kinetics of similar processes in mixed alcohol + surfactant micellar solutions, and microemulsions; (iii) the kinetics of the exchange of solubilizates between micelles (and other organized assemblies) and the bulk; and (iv) the available evidence for the exchange of compounds between microemulsion droplets occurring through micelle collisions or partial micellar breakdown and the results concerning their kinetics.

Keywords

Oligomer Alkane CTAB Butanol Ruthenium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Zana and J. Lang, in “Solution Behavior of Surfactants” K. L. Mittal and E. J. Fendler, Editors, Vol 2, p. 1195, Plenum Press, New York, 1982.CrossRefGoogle Scholar
  2. 2.
    B. J. Carroll, J. Colloid Interface Sci., 79, 126 (1981).CrossRefGoogle Scholar
  3. 3.
    A. Ben-Shaul and W. Gelbart, J. Phys. Chem., 86, 316 (1982)CrossRefGoogle Scholar
  4. 4.
    O. Abillon, These de 3e cycle, University of Paris VI, 1984Google Scholar
  5. 4a.
    D. Roux, D. Sc. Thesis, University of Bordeaux I, 1984.Google Scholar
  6. 5.
    J. Fendler and E. Fendler, “Catalysis in Micellar and Macromolecular Systems” Academic Press, 1975Google Scholar
  7. 5a.
    J. Fendler, Acc. Chem. Res.,9, 153 (1976)CrossRefGoogle Scholar
  8. 5b.
    R. Mackay, Adv. Colloid Interface Sci., 15, 131 (1981)CrossRefGoogle Scholar
  9. 5c.
    D. G. Whitten, Angew. Chem. Int. Ed., 18., 440 (1979).CrossRefGoogle Scholar
  10. 6.
    N. Muller, J. Phys. Chem., 76 ,3017 (1972).CrossRefGoogle Scholar
  11. 7.
    T. Nakagawa, Colloid Polymer Sci., 252, 56 (1974).CrossRefGoogle Scholar
  12. 8.
    J. Lang, C. Tondre, R. Zana, R. Bauer, H. Hoffmann and W. Ulbricht, J. Phys. Chem., 79, 276 (1975).CrossRefGoogle Scholar
  13. 9.
    E. Graber, J. Lang and R. Zana, Kolloid Z.Z. Polym., 238, 470 (1970)CrossRefGoogle Scholar
  14. 9a.
    E. Graber and R. Zana, ibid, 238, 479 (1970).Google Scholar
  15. 10.
    T. Janic and H. Hoffmann, Z. Phys. Chem. N.F., 86, 322 (1973)Google Scholar
  16. 10a.
    R. Folger, H. Hoffmann and W. Ulbricht, Ber. Bunsenges. Phys. Chem., 7, 986 (1974).Google Scholar
  17. 11.
    E.A.G. Aniansson and S. N. Wall, J. Phys. Chem., 78, 1024 (1974)CrossRefGoogle Scholar
  18. 11a.
    E.A.G. Aniansson and S. N. Wall, J. Phys. Chem., 79, 857 (1975).CrossRefGoogle Scholar
  19. 12.
    See for instance C. A. Hoeve and G. C. Benson, J. Phys. Chem., 61, 1149 (1957)CrossRefGoogle Scholar
  20. 12a.
    E. Ruckenstein and R. Nagarajan, ibid,79 ,2622 (1975).Google Scholar
  21. 13.
    E.A.G. Aniansson, S. N. Wall, M. Almgren, H. Hoffmann, I. Kielman, W. Ulbricht, R. Zana, J. Lang and C. Tondre, J. Phys. Chem., 80, 905 (1976).CrossRefGoogle Scholar
  22. 14.
    H. Hoffmann and W. Ulbricht, Z. Phys. Chem. N.F., 106, 167 (1977).CrossRefGoogle Scholar
  23. 15.
    H. Hoffmann, R. Lang, D. Pavlovic and W. Ulbricht, Croat. Chim. Acta., 52, 87 (1979).Google Scholar
  24. 16.
    H. Hoffmann, B. Tagesson and W. Ulbricht, Ber. Bunsenges. Phys. Chem., 83, 148 (1979).Google Scholar
  25. 17.
    D. Bauernschmitt, H. Hoffmann and G. Platz, Ber. Bunsenges. Phys. Chem., 85, 203 (1981).Google Scholar
  26. 18.
    D. Schmitt, C. Gahwiller and C. Von Pianta, J. Colloid Interface Sci., 83, 191 (1981)CrossRefGoogle Scholar
  27. 18a.
    J. Lang, J. Phys. Chem., 86, 992 (1982).CrossRefGoogle Scholar
  28. 19.
    H. Hoffmann, Prog. Colloid Polymer Sci.,65, 140 (1978)CrossRefGoogle Scholar
  29. 19a.
    H. Hoffmann, Ber. Bensenges. Phys. Chem., 82, 988 (1978).Google Scholar
  30. 20.
    J. Bolt and N. J. Turro, J. Phys. Chem., 85, 4029 (1981).CrossRefGoogle Scholar
  31. 21.
    M. Almgren, F. Grieser and J. K. Thomas, J. Chem. Soc. Faraday Trans I., 75, 1674 (1979).CrossRefGoogle Scholar
  32. 22.
    K. Takeda, J. Sci. Hiroshima Univ., Ser. A, 40, 87 (1976).Google Scholar
  33. 23.
    P. Sams, E. Wyn Jones and J. Rassing, Chem. Phys. Lett., 13, 233 (1972).CrossRefGoogle Scholar
  34. 24.
    D. Adair, V. Reinsborough, H. Trenholm and J. Valleau, Can. J. Chem., 54, 1162 (1976).CrossRefGoogle Scholar
  35. 25.
    T. Inoue, R. Tashiro and R. Shimozawa, Bull. Chem. Soc. Jpn., 54, 971 (1981).CrossRefGoogle Scholar
  36. 26.
    E.A.G. Aniansson, J. Phys. Chem., 82, 2805 (1980).CrossRefGoogle Scholar
  37. 27.
    S. K. Chan, U. Herrmann, W. Oster and M. Kahlweit, Ber. Bunsenges. Phys. Chem., 81, 60 and 397, 1977).Google Scholar
  38. 27a.
    E.A.G. Aniansson and S. N. Wall, Ber. Bunsenges. Phys. Chem., 81, 1923, 1977Google Scholar
  39. 27b.
    S. K. Chan and M. Kahlweit, ibid, 81, 1924, 1977Google Scholar
  40. 27c.
    M. Teubner, S. Diekmann and M. Kahlweit, Ber. Bunsenges, Phys. Chem., 82, 1278, 1978Google Scholar
  41. 27d.
    G. Kegeles, J. Colloid Interface Sci., 73, 274, 1980CrossRefGoogle Scholar
  42. 27e.
    T. Inoue, R. Tashiro, Y. Shibuya and R. Shimozawa, ibid, 73, 105, 1979Google Scholar
  43. 27f.
    E.A.G. Aniansson and S. N. Wall, J. Colloid Interface Sci., 78, 567 (1980).CrossRefGoogle Scholar
  44. 28.
    E.A.G. Aniansson, manuscript submitted for publication.Google Scholar
  45. 29.
    W. Baumuller, H. Hoffmann, W. Ulbricht, C. Tondre and R. Zana, J. Colloid Interface Sci., 64, 418 (1978).CrossRefGoogle Scholar
  46. 30.
    E. Lessner, M. Teubner and M. Kahlweit, (a) J. Phys. Chem., 85, 1529 (1981)CrossRefGoogle Scholar
  47. 30a.
    E. Lessner, M. Teubner and M. Kahlweit, (b) ibid, 85, 3167 (1981).Google Scholar
  48. 31.
    J. Lang, J. Auborn and E. Eyring, J. Colloid Interface Sci., 41, 484 (1972)CrossRefGoogle Scholar
  49. 31a.
    J. Lang and E. Eyring, J. Polymer Sci., A-2, 10, 89 (1972).Google Scholar
  50. 32.
    C. U. Herrmann and M. Kahlweit, J. Phys. Chem., 84, 1536 (1980).CrossRefGoogle Scholar
  51. 33.
    H. Hoffmann, A. Kielman, D. Pavlovic, G. Platz and W. Ulbricht, J. Colloid Interface Sci., 80, 237 (1981).CrossRefGoogle Scholar
  52. 34.
    A. Colen, J. Phys. Chem., 78, 1676 (1974).CrossRefGoogle Scholar
  53. 35.
    S. Yiv, R. Zana, W. Ulbricht and H. Hoffmann, J, Colloid Interface Sci., 80, 224 (1981).CrossRefGoogle Scholar
  54. 36.
    M. Kahlweit, Pure Appl. Chem., 53, 2069 (1981)CrossRefGoogle Scholar
  55. 36a.
    M. Kahlweit, J. Colloid Interface Sci., 90, 92 (1982).CrossRefGoogle Scholar
  56. 37.
    D. G. Hall, J. Chem. Soc Faraday trans II,77, 1973 (1981)CrossRefGoogle Scholar
  57. 37a.
    D. G. Hall, Colloid Surfaces, 4, 367 (1982).CrossRefGoogle Scholar
  58. 38.
    D. Adair, V. Reinsborough and S. Zamora, Adv. Molec Relax. Interact. Proc., 11, 63 (1977)CrossRefGoogle Scholar
  59. 38a.
    D. Jobe, V. Reinsborough and P. White, Can. J. Chem., 60., 279 (1982).CrossRefGoogle Scholar
  60. 39.
    E.A.G. Aniansson, Ber. Bunsenges. Phys. Chem., 82, 981 (1978).Google Scholar
  61. 40.
    Preliminary measurements do show a sizeable change of t2 upon oil solubilization (J. Lang, personal communication).Google Scholar
  62. 41.
    M. Almgren, F. Grieser and J. K. Thomas, J. Am. Chem. Soc., 101, 279 (1979).CrossRefGoogle Scholar
  63. 42.
    K. Glasle, U. K. Klein and M. Hauser, J. Molec; Struct.,84, 353 (1980).CrossRefGoogle Scholar
  64. 43.
    N. Turro and M. Aikawa, J. Am. Chem. Soc., 102, 4866 (1980).CrossRefGoogle Scholar
  65. 44.
    Y. Croonen, E. Gelade, M. Van der Zegel, M. Van der Auweraer, H. Vandendriessche, F. C. De Schryver and M. Almgren, J. Phys. Chem., 87, 1226 (1983).CrossRefGoogle Scholar
  66. 45.
    N. Turro, M. Zimm and I. Gould, J. Am. Chem. Soc., 105, 6347 (1983).CrossRefGoogle Scholar
  67. 46.
    J. C. Selwyn and J. C. Scaiano, Can. J. Chem., 59, 663 (1981).CrossRefGoogle Scholar
  68. 47.
    J. C. Scaiano and J. C. Selwyn, Can. J. Chem., 59, 2368 (1981).CrossRefGoogle Scholar
  69. 48.
    M. P. Pileni and M. Graetzel, J. Phys. Chem., 84, 1821 (1980).Google Scholar
  70. 49.
    W. J. Leigh and J. C. Scaiano, J. Am. Chem. Soc., 105, 5262 (1983).Google Scholar
  71. 50.
    J. Lofroth and M. Almgren, J. Phys. Chem., 86, 1636 (1982).CrossRefGoogle Scholar
  72. 51.
    J. K. Thomas, Acc. Chem. Res., 80, 283 (1980).Google Scholar
  73. 52.
    P. Lianos, M. L. Viriot and R. Zana, J. Phys. Chem., 88, 1098 (1984).CrossRefGoogle Scholar
  74. 53.
    G. Duckwitz-Peterlein and H. Moraal, Biophys. Struct. Mechanism., 4, 315 (1978).CrossRefGoogle Scholar
  75. 54.
    M. Tachiya and M. Almgren, J. Chem. Phys., 75, 865 (1981).CrossRefGoogle Scholar
  76. 55.
    M. Almgren, Chem. Phys. Lett., 71, 539 (1980)CrossRefGoogle Scholar
  77. 55a.
    M. Almgren, J. Am. Chem. Soc., 102, 7882 (1980).CrossRefGoogle Scholar
  78. 56.
    M. Doody, H. Pownall, Y. Kao and L. Smith, Biochem., 19, 108 (1980).CrossRefGoogle Scholar
  79. 57.
    M. Roseman and T. Thompson, Biochem., 19, 439 (1980).CrossRefGoogle Scholar
  80. 58.
    P. Sengupta, E. Sackmann, W. Kuhnle and H. Scholz, Biochim. Biophys. Acta., 436, 869 (1976).CrossRefGoogle Scholar
  81. 59.
    J. W. Nichols and R. Pagano, Biochem., 21, 1720 (1982)CrossRefGoogle Scholar
  82. 59a.
    J. W. Nichols and R. Pagano, Biochem., 20, 2783 (1981).CrossRefGoogle Scholar
  83. 60.
    M. Almgren and S. Swarup, Chem. Phys. Lipids, 31, 13 (1982).CrossRefGoogle Scholar
  84. 61.
    T. Kano, T. Yamaguchi and T. Matsuo, J. Phys. Chem., 84, 72 (1980).CrossRefGoogle Scholar
  85. 62.
    S. Charlton, J. Olson, K. Y. Hong, H. Pownall, D. Louie and L. Smith, J. Biol. Chem., 251, 7952 (1976).Google Scholar
  86. 63.
    E.A.G. Aniansson, in “Techniques and Applications of Fast Reactions in Solution” W. J. Gettins and E. Wyn-Jones, Editors, D. Reidel Pub. Co., p. 249, Dordrecht, Holland, 1979.Google Scholar
  87. 64.
    P. Sams, J. Rassing and E. Wyn-Jones, Adv. Mol. Relax. Proc., 6, 255 (1975).CrossRefGoogle Scholar
  88. 65.
    D. Hall, P. Jobling, E. Wyn-Jones and J. Rassing, J. Chem. Soc Faraday Trans. II,73, 1582 (1977).CrossRefGoogle Scholar
  89. 66.
    J. Gettins, D. Hall, P. Jobling, J. Rassing and E. Wyn-Jones, J. Chem. Soc. Faraday Trans. II, 74, 1957 (1978).CrossRefGoogle Scholar
  90. 67.
    S. Yiv and R. Zana, J. Colloid Interface Sci., 65, 286 (1978).CrossRefGoogle Scholar
  91. 68.
    N. Rao and R. Verrall, J. Phys. Chem., 86, 4777 (1982).CrossRefGoogle Scholar
  92. 69.
    H. Uehara, J. Sci. Hiroshima Univ. Ser. A, 40, 305 (1976).Google Scholar
  93. 70.
    J. Lang and R. Zana, unpublished results and these proceedings.Google Scholar
  94. 71.
    R. Zana and J. Lang, unpublished results; Paper presented at the Int. Workshop on Mlcroemulslons, Lund, 1984.Google Scholar
  95. 72.
    This value however refers only to the fraction of fragmentation reactions in which one pyrene molecule is taken along by a micelle fragment. The true rate constant of fragmentation will be obtained by dividing the experimental Value of this rate constant by the probability of having a pyrene molecule in the fragment, that is the product of the average number of pyrene per micelle by the ratio of the volume of a fragment over the micelle volume. This ratio is unfortunately not known but a value of 10 appears reasonable.1 This would result in a rate constant of fragmentation of 2x10 s for the example discussed. This rate constant is quite large and emphasizes the extreme lability of the mixed alcohol+surfactant micelles in concentrated solutions.Google Scholar
  96. 73.
    T. Inoue, Y. Shibuya and R. Shimozawa, J. Colloid Interface Sci., 65, 370 (1978).CrossRefGoogle Scholar
  97. 74.
    J. Lang, A. Djavanbakht and R. Zana, “Microemulsions” I.D. Robb, Editor, Plenum Press, 1982, p. 233Google Scholar
  98. 74a.
    J. Lang, A. Djavanbakht and R. Zana, J. Phys. Chem., 84, 1541 (1980).CrossRefGoogle Scholar
  99. 75.
    O. Bayer, H. Hoffmann and W. Ulbricht, these proceedings.Google Scholar
  100. 76.
    F. Menger, J. Donahue and R. Williams, J. Am. Chem. Soc., 95, 286 (1973).CrossRefGoogle Scholar
  101. 77.
    H. F. Eicke, J. C. Shepherd and A. Steinemann, J. Colloid Interface Sci., 56 ,168 (1976).CrossRefGoogle Scholar
  102. 78.
    H. F. Eicke and P. Zinsli, J. Colloid Interface Sci.,65, 131 (1978).CrossRefGoogle Scholar
  103. 79.
    B. H. Robinson, D. Steyler and R. Tack, J. Chem. Soc. Faraday Trans. I, 75, 481 (1979).CrossRefGoogle Scholar
  104. 80.
    C. Tondre and R. Zana, J. Dispersion Sci. Tech., 1, 179 (1980).CrossRefGoogle Scholar
  105. 81.
    P. Fletcher and B. H. Robinson, Ber. Bunsenges. Phys. Chem., 85, 863 (1981).Google Scholar
  106. 82.
    S. Atik and J. K. Thomas, Chem. Phys. Lett., 79, 351 (1981)CrossRefGoogle Scholar
  107. 82.
    S. Atik and J. K. Thomas, J. Am. Chem. Soc, 103, 3543 (1981).CrossRefGoogle Scholar
  108. 83.
    S. Atik and J. Thomas. J. Phys. Chem., 85, 3921 (1981).CrossRefGoogle Scholar
  109. 84.
    F. Gelade and F. C. De Schryver, J. Photochem., 18 , 223 (1982).CrossRefGoogle Scholar
  110. 85.
    J. M. Furois, P. Brochette and M. P. Pileni, J. Colloid Interface Sci., 97, 552 (1984).CrossRefGoogle Scholar
  111. 86.
    M. P. Pileni, P. Brochette, B. Hickel and B. Lerebours, J. Colloid Interface Sci., 98,, 549 (1984).Google Scholar
  112. 87.
    P. Lianos, J. Lang and R. Zana, unpublished results and these proceedings.Google Scholar
  113. 88.
    G. Fourche, A. M. Bellocq and S. Brunetti, J. Colloid Interface Sci., 88, 302 (1982).CrossRefGoogle Scholar
  114. 89.
    A. M. Cazabat, D. Chatenay, D. Langevin and A. Pouchelon, J. Phys. Lett., 41,L 441 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Zana
    • 1
  1. 1.C.R.M. and GRECO “MICROEMULSIONS”CNRSStrasbourgFrance

Personalised recommendations