Advertisement

Statistical-Thermodynamic Theory of Surfactant Organization in Micelles and Bilayers

  • A. Ben-Shaul
  • I. Szleifer
  • W. M. Gelbart

Abstract

The probability distribution of chain conformations in micellar aggregates of arbitrary geometry is derived using two alternative approaches: (i) By minimizing the free energy functional of a single chain, subject to the packing constraints imposed by the presence of neighboring chains in the hydrophobic core; (ii) By expanding the many-chain configurational integral in terms of the excluded volumes characterizing one (‘central’) chain in a given conformation. The central assumption in both derivations is that chain organization and conformational statistics in amphiphilic aggregates are governed by the shortrange, repulsive, inter-molecular interactions. Bond order parameter profiles and other single chain properties which can be calculated using the conformational probability distribution are in good agreement with experimental and computer simulation studies. Yet, our main concern in this paper is the theoretical (statistical thermodynamic) description of chain organization within the hydrophobic core, with particular emphasis on the role of micellar geometry. In this spirit a considerable part of the discussion is devoted to comparisions with other theoretical approaches.

Keywords

Statistical Weight Hydrophobic Core Chain Segment Helmholtz Free Energy Chain Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tanford, “The Hydrophobic Effect” 2nd edition, Wiley, New York, 1980.Google Scholar
  2. 2a).
    J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976).CrossRefGoogle Scholar
  3. b).
    J. N. Israelachvili, S. Marcelja and R. G. Horn, Quart. Rev. Biophys. 13, 121 (1980).CrossRefGoogle Scholar
  4. c).
    J. N. Israelachvili, these proceeding, and in “Physics of Amphiphiles: Micelles, Vesicles and Microemulsions” P. P. V. Degiorgio and M. Corti, Editors, North Holland, 1984.Google Scholar
  5. 3.
    See, e.g., E. Vikingstad and H. Høiland, J. Colloid Interface Sci. 64, 510 (1978).CrossRefGoogle Scholar
  6. 4(a).
    See, e.g., (a) E. T. Samulski, Ferroelectrics 30, 83 (1980)CrossRefGoogle Scholar
  7. (b).
    A. Ben-Shaul, Y. Rabin and W. M. Gelbart, J. Chem. Phys. 78, 4303 (1983).CrossRefGoogle Scholar
  8. 5a).
    B. Mely, J. Charvolin and P. Keller, Chem. Phys. Lipids 15 ,161 (1975).CrossRefGoogle Scholar
  9. b).
    J. Charvolin, J. Chem. Phys. 80, 15 (1983).Google Scholar
  10. c).
    J. Charvolin and Y. Hendrikx, in “NMR in Liquid Crystals” J.W. Emsley and G. Luckhurst, Editors, Reidel Publishing Co., in press.Google Scholar
  11. 6a).
    H. Walderhaug, O. Soderman and P. Stilbs, J. Phys. Chem. 88, 1655 (1984).CrossRefGoogle Scholar
  12. b).
    B. Lindman, T. Ahlnas, O. Soderman and H. Walderhaug, Faraday Disc. Chem. Soc. 76, 317 (1983).CrossRefGoogle Scholar
  13. c).
    T. Ahlnäs , O. Soderman, H. Walderhaug and B. Lindman, In “Surfactants in Solution” Vol. 1, K.L. Mittal and B. Lindman, Editors, p. 107, Plenum Press, New York, 1984.Google Scholar
  14. 7.
    For a review see, J. F. Nagle, Ann. Rev. Phys. Chem. 31, 157 (1980).CrossRefGoogle Scholar
  15. 8a).
    F. M. Menger, Acc. Chem. Res. 12 ,111 (1979).CrossRefGoogle Scholar
  16. b).
    P. Fromherz, Chem. Phys. Lett. 77, 460 (1981).CrossRefGoogle Scholar
  17. 8c).
    B. Cabane, J. Phys. Paris, 42, 847 (1981).Google Scholar
  18. 9.
    T. Zemb and C. Chachaty, in “Surfactants in Solution” K.L. Mittal and B. Lindman, Editors, Vol. 1, Plenum Press, New York, 1984.Google Scholar
  19. 10.
    B. Lemaire and P. Bothorel, Macromolecules 13, 311 (1980).CrossRefGoogle Scholar
  20. 10a.
    B. Lemaire and P. Bothorel, J. Polym. Sci., Phys. Ed. 20, 867 (1982).CrossRefGoogle Scholar
  21. 11.
    D. W. R. Gruen and E. H. B. de Lacey, in “Surfactants in Solution” K. L. Mittal and B. Lindraan, Editors, Vol. 1, p. 279, Plenum Press, New York, 1984.Google Scholar
  22. 11a.
    D. W. R. Gruen, J. Colloid Interface Sci. 84, 281 (1981)CrossRefGoogle Scholar
  23. 11b.
    D. W. R. Gruen, Biochem. Biophys. Acta 595, 161 (1980).CrossRefGoogle Scholar
  24. 12.
    D. W. R. Gruen, J. Phys. Chem. 89, 146, 153 (1985).CrossRefGoogle Scholar
  25. 13.
    D. W. R. Gruen, Prog. Colloid Polymer Sci. 70, 6 (1985).CrossRefGoogle Scholar
  26. 14a).
    K. A. Dill and P. J. Flory, Proc. Natl. Acad. Sci., USA, 77, 3115, (1980).CrossRefGoogle Scholar
  27. b).
    K. A. Dill and P. J. Flory, ibid. 78, 676 (1981).Google Scholar
  28. 15a).
    K. A. Dill and R. S. Cantor, Macromolecules VT, 380 (1984).Google Scholar
  29. b).
    R. S. Cantor and K. A. Dill, Macromolecules 17, 384 (1984).CrossRefGoogle Scholar
  30. 16.
    K. A. Dill, D. E. Koppel, R. S. Cantor, J. D. Dill, D. Bendedouch and S.-H. Chen, Nature, 309, 42 (1984).CrossRefGoogle Scholar
  31. 17a).
    A. Ben-Shaul, I. Szleifer and W. M. Gelbart, Proc. Natl. Acad. Sci. USA 81, 4601 (1984).CrossRefGoogle Scholar
  32. b).
    A. Ben-Shaul, I. Szleifer and W. M. Gelbart, in “Physics of Amphiphiles: Micelles, Vesicles and Microemulsions” V. Degiorgio and M. Corti, Editors, North Holland, 1984.Google Scholar
  33. 18a).
    A. Ben-Shaul, I. Szleifer and W. M. Gelbart, J. Chem. Phys. 83, 3597 (1985).CrossRefGoogle Scholar
  34. b).
    I. Szleifer, A. Ben-Shaul and W. M. Gelbart, J. Chem. Phys. 83, 3612 (1985).CrossRefGoogle Scholar
  35. 19.
    P. van der Ploeg and H. J. C. Berendsen, (a) Mol. Phys. 49, 233 (1983).CrossRefGoogle Scholar
  36. (b).
    P. van der Ploeg and H. J. C. J. Chem. Phys. 76, 3271 (1982).CrossRefGoogle Scholar
  37. 20.
    B. Owenson and L. R. Pratt, to be published.Google Scholar
  38. 21a).
    B. Owenson and L. R. Pratt, J. Phys. Chem. 88, 2905 (1984).CrossRefGoogle Scholar
  39. b).
    S. W. Haan and L. R. Pratt, Chem. Phys. Lett. 79, 436 (1981).CrossRefGoogle Scholar
  40. 22.
    J. M. Haile and J. P. O’Connell, J. Phys. Chem. 88, 6363 (1984).CrossRefGoogle Scholar
  41. 23a).
    J. D. Weeks, D. Chandler and H. C. Andersen, 54, 5237 (1971).Google Scholar
  42. b).
    J. A. Barker and D. Henderson, Ann. Rev. Phys. Chem. 23, 439 (1972).CrossRefGoogle Scholar
  43. c).
    A. Wulf, J. Chem. Phys. 64, 104 (1975).CrossRefGoogle Scholar
  44. d).
    W. M. Gelbart and B. Barboy, Accts. Chem. Res. 13., 290 (1980).CrossRefGoogle Scholar
  45. 24a).
    E. T. Jaynes, in “Statistical Physics” Brandeis Lectures, K. W. Ford, Editor, Vol. 3, p. 182, Benjamin, New York, 1963.Google Scholar
  46. b).
    R. D. Levine and M. Tribus, Editors. “The Maximum Entropy Formalism,” MIT Press, Cambridge, 1979.Google Scholar
  47. 25.
    S. Marcelja, a) Biochem. Biophys. Acta 367, 165 (1974).CrossRefGoogle Scholar
  48. b).
    S. Marcelja, J. Chem. Phys. 60, 3599 (1974).CrossRefGoogle Scholar
  49. 26.
    P. J. Flory, “Statistical Mechanics of Chain Molecules,” Wiley, New York, 1969.Google Scholar
  50. 27.
    M. A. Winnik, D. Rigby, R. F. T. Stepto and B. Lemaire, Macromolecules, 13, 699 (1980).CrossRefGoogle Scholar
  51. 28.
    P. J. Missel, N. A. Mazer, G. B. Benedek, C.Y. Young and M. C. Carey, J. Phys. Chem. 84, 1044 (1980).CrossRefGoogle Scholar
  52. 29.
    J. Seelig and W. Niederberger, Biochemistry j 3, 1585 (1974).CrossRefGoogle Scholar
  53. 30.
    See, e.g., S. Chandrasekhar, “Liquid Crystals,” Cambridge University Press, Cambridge, U.K., 1977.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Ben-Shaul
    • 1
  • I. Szleifer
    • 1
  • W. M. Gelbart
    • 2
  1. 1.Department of Physical Chemistry and The Fritz Haber Center for Molecular DynamicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of ChemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations