Skip to main content

Polymer Modification by Radiation Grafting in the Presence of Salt Additives and its Application in Enzyme Immobilization

  • Chapter
  • 158 Accesses

Abstract

A novel radiation grafting method for modifying polymers of use in biomedical work is discussed. The procedure involves the use of particular inorganic salts as additives for accelerating the radiation grafting process. Styrene is used as typical monomer in these studies with cellulose, the polyolefins and PVC as representative backbone polymers. Two radiation grafting techniques are examined, namely pre-irradiation and simultaneous methods. The parameters affecting the observed grafting enhancement in the presence of these salt additives are treated. The results are compared with analogous data previously obtained with other additives, including acids. A new model for the mechanism of enhancement in radiation grafting in the presence of acids and/or salts is proposed. A typical biomedical application of the salt grafting technique for enzyme immobilization is briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Garnett, Radiation Phys. Chem., 14, 79 (1979)

    Google Scholar 

  2. B. D. Ratner and A. S. Hoffman, J. Appl. Polym. Sci., 18, 3183 (1974)

    Article  CAS  Google Scholar 

  3. V. Stannett, “Graft Copolymerization of Lignocellulose Fibers”, Am. Chem. Soc. Symp. Ser. No. 187, D.N.-S Hon, Ed., An. Chem. Soc. Washington, D. C., 1982, p. 3.

    Google Scholar 

  4. J. C. Arthur, Jr., “Graft Copolynerization of Lignocellulose Fibers”, An. Chem. Soc. Symp. Ser. No. 187, D. H. -S. Hon, Ed., An. Chem. Soc., Washington, D. C., 1982, p. 21.

    Google Scholar 

  5. J. L. Garnett, S. V. Jankievicz, R. Levot and D. F. Sangster, Radiation Phys. Chem., in press.

    Google Scholar 

  6. C. H. Ang, J. L. Garnett, R. Levot and H. A. Long, J. Appl. Polyn. Sci., 27, 4893 (1982).

    Article  CAS  Google Scholar 

  7. S. Dilli and J. L. Garnett, Aust. J. Chem., 24, 981 (1971).

    Article  CAS  Google Scholar 

  8. B. S. Karten and T. S. Ma, Microchem. J., 3, 507 (1959).

    Article  CAS  Google Scholar 

  9. L. Goldstein, Biochem. Biophys. Acta, 315, 1 (1973).

    CAS  Google Scholar 

  10. S. Blackburn, Anino Acid Deternination, Arnold, London, 1968.

    Google Scholar 

  11. J. P. Greenstein and H. Winitz, Chemistry of the Amino Acids, Wiley, New York, 1961.

    Google Scholar 

  12. E. W. Yenm and E. C. Cocking, Analyst, 80, 209 (1955).

    Article  Google Scholar 

  13. H. Bergmeyer, Hethods of Enzynatic Analyses, Acadenic Press, New York, 1963.

    Google Scholar 

  14. W. J. Chappas and J. Silvernan, Radiat. Phys. Chem., 14, 487 (1979).

    Google Scholar 

  15. C. H. Ang, J. L. Garnett, S. V. Jankievicz and D. F. Sangster, “Graft Copolynerization of Lignocellulose Fibers”, An. Chem. Soc. Symp. Ser. No. 187, D. N. -S. Hon, Ed., An. Chem. Soc., Washington, D. C., 1982, p. 141.

    Google Scholar 

  16. J. H. Baxendale and F. W. Mellows, J. An. Chem. Soc., 83, 4720 (1962).

    Article  Google Scholar 

  17. A. Ekstrom and J. L. Garnett, J. Phys. Chem., 70, 324 (1966).

    Article  CAS  Google Scholar 

  18. J. L. Garnett, S. V. Jankievicz, R. Levot, H. A. Long and D. F. Sangster, Radiat. Phys. Chem., in press.

    Google Scholar 

  19. J. L. Garnett, S. V. Jankievicz and D. F. Sangster, unpublished work.

    Google Scholar 

  20. S. Dilli and J. L. Garnett, Aust. J. Chem., 21, 397 (1968)

    Article  CAS  Google Scholar 

  21. H. Borzaghi, A. Ganba, G. Horosi and H. Sinonetta, J. Phys. Chem., 78, 49 (1974).

    Article  Google Scholar 

  22. D. L. Regan and P. F. Greenfield, Chem. Aust., 45, 317 (1978).

    CAS  Google Scholar 

  23. S. Venkataranan, T. A. Horbett and A. S. Hoffnan, J. Biomed. Mater. Res. Symp., 8, 111 (1977).

    Article  Google Scholar 

  24. S. Bett and J. L. Garnett, unpublished work.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Garnett, J.L., Jankiewicz, S.V., Long, M.A., Sangster, D.F. (1987). Polymer Modification by Radiation Grafting in the Presence of Salt Additives and its Application in Enzyme Immobilization . In: Gebelein, C.G. (eds) Advances in Biomedical Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1829-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1829-3_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9022-3

  • Online ISBN: 978-1-4613-1829-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics