Skip to main content

Design and in Vitro Testing of Newly Made Bicomponent Knitted Fabrics for Vascular Surgery

  • Chapter
Book cover Advances in Biomedical Polymers

Abstract

The purpose of this study is to advance an alternative design of knitted vascular grafts in order to achieve low bleeding porosity at implantation without the expense of high healing porosity for full-wall healing. The design is based on the utilization of both biodegradable (polyglycolic acid) and nonbiodegradable (Dacron) synthetic fibers blended at various composition ratios. The fabric construction is of single jersey weft knitted tubular structure. The experimental part of this study included the fabrication of the knitted specimens at various composition ratios of PGA to Dacron fibers, characterization of the knitted specimens, and in the in vitro physical, mechanical and morphological testing of the specimens after various periods of immersion in phosphate buffer of pH 7.4. The overall properties of these bicomponent fabrics were determined by the relative magnitudes of the two opposite factors: the absorption of PGA component and the inherent relaxation shrinkage of the weft knitted fabrics. The most important observation of the study was the achievement of increasing water porosity with the duration of immersion without the significant expenses of structural integrity and strength of the specimens. This unique property has not been found in commercial vascular graft fabrics of similar construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Dale, “Arterial Grafts: 1900–1978”, In: “Graft Materials in Vascular Surgery”, Herbert Dardik, Ed., Symposia Specialists Inc., Miami. FL, 1978.

    Google Scholar 

  2. R. S. Lord, “The Search for an Ideal Arterial Substitute”, Australia- New Zealand Journal of Surgery, 44, 362–369 (1974).

    Article  CAS  Google Scholar 

  3. N. Rosenberg, A. Simpson and R. Brown,“:A Circumferentially Elastic Arterial Prosthesis: Three Year Study of a Dacron-Spandex Graft in the Dog”, J. Surg. Res., 34, 7–16 (1983).

    Article  CAS  Google Scholar 

  4. L. R. Sauvage, K. Berger and S. J. Wood,. et al. “Grafts for the 80’s”, Bob Hope International Heart Research Institute, Seattle, WA (1980).

    Google Scholar 

  5. ASTH D1777-64, “Measuring Thickness of Textile Materials”, Annual Book of ASTM Standards, ASTH, Philadelphia, PA, Part 32, pp. 383 (1980).

    Google Scholar 

  6. ASTM D4032-81, “Stiffness of Fabric by the Circular Bend Procedure”, Annual Book of ASTM Standards, ASTM, Philadelphia, PA, Part 32, pp 892 (1980).

    Google Scholar 

  7. S. A. Wesolowski, C. Fries, J. McMahon and A. Martinez, “Evaluation of a New Vascular Prosthesis with Optimal Specifications”, Surgery, 59, 40–56 (1966).

    CAS  Google Scholar 

  8. ASTM D3787-80a, “Bursting Strength of Knitted Goods - Constant–Rate - of Traverse (CRT) Ball Burst Test”, Annual Book of ASTM Standards, ASTM, Philadelphia, PA, Part 32, pp. 815 (1980).

    Google Scholar 

  9. W. King, P. Blias, R. Guidoin, E. Prowse, M. Marcois, C. Gosselin and H. P. Noel, “Polyethylene Terephthalate (Dacron) Vascular Prostheses - Materials and Fabric Construction Aspects”, In: “Biocompatibility of Clinical Implant Materials”, D. F. Williams, Ed., Vol. II., Chapter 8, CRC Press, Boca Raton, FL (1981).

    Google Scholar 

  10. S. A. Wesolovski, C. Fries, R. Domingo, W. Liebig and P. Sawyer, “The Compound Prosthetic Vascular Graft: A Pathologic Survey”, Surgery, 53, 19 (1963).

    Google Scholar 

  11. R. J. Ruderman, A. F. Hegyeli, B. G. Hattler and F. Leonard, “A Partially Biodegradable Vascular Prostheses”, Trans. Amer. Soc. Artif. Int. Org., 28, 30–33 (1972).

    Google Scholar 

  12. S. Bowald, C. Busch and I. Eriksson, “Arterial Regeneration Following Polyglactin 910 Suture Mesh Grafting”, Surgery, 86 (5), 722–729 (1979).

    CAS  Google Scholar 

  13. S. Bowald, C. Busch and I. Eriksson, “Absorbable Material in Vascular Prostheses: A New Device”, Acta. Chir. Scand., 146, 391–395 (1980).

    CAS  Google Scholar 

  14. S. Bowald, C. Busch, I. Eriksson and T. Åberg, “Repair of Cardiac Defects with Absorbable Material”, Scand. J. Thor. Cardiovas. Surg., 15, 91–94 (1981).

    Article  CAS  Google Scholar 

  15. H. Greisler, “Arterial Regeneration Over Absorbable Prosthesis”, Arch. Surg., 117, 1425–1430 (1982).

    CAS  Google Scholar 

  16. H. Greisler, D. U. Kim, J. B. Price and A. B. Voorhees, “Arterial Regeneration Activity After Prosthetic Implantation”, Arch. Surg., 120, 315–323 (1985).

    CAS  Google Scholar 

  17. S. Gogolewski and A. J. Pennings, “Groningen Biodegradable Vascular Prostheses, ”In: “Biomaterials and Biomechanics 1983”, Eds., P. Ducheyne, G. Vander Pene and A. E. Aubert, Elsevier Sci. Publ., B. V. Amsterdam (1984).

    Google Scholar 

  18. S. Gogolewski and A. J. Pennings, “Growth of a Neo-Artery Induced by a Biodegradable Polymeric Vascular Prosthesis ”, Makromol. Chem., Rapid Commun., 4, 213–219 (1983).

    Article  CAS  Google Scholar 

  19. J. O. Hollinger, “Preliminary Report on the Osteogenic Potential of a Biodegradable Copolymer of Polylactide (PLA) and Polyglycolic (PGA)”, J. Biomed. Mater. Res., 17, 71–82 (1983).

    Article  CAS  Google Scholar 

  20. T. K. Hunt, W. B. Conolly, S. B. Aronson and P. Goldstein, “Anaerobic Metabolism and Wound Healing: A Hypothesis for the Initiation and Cessation of Collagen Synthesis in Wounds”, Am. J. Surg., 135, 328 (1978).

    Article  CAS  Google Scholar 

  21. C. C. Chu, “The Degradation and Biocompatibility of Suture Materials”, In: “CRC Critical Reviews in Biocompatibility”, David F. Williams, Ed., Vol. 1, Issue 3, 261–322 (1985), CRC Press, Boca Raton, FL.

    Google Scholar 

  22. A. R. Katz and R. J. Turner, “Evaluation of Tensile and Absorption Properties of Polyglycolic Acid Sutures”, Surg. Gynecol. Obstet., 131, 701 (1970).

    CAS  Google Scholar 

  23. A. M. Reed and D. K. Gilding, “Biodegradable Polymers for Use in Surgery Poly(glycolic)/Poly(lactic acid) Homo and Copolymers II. In Vitro Degradation”, Polymer, 22 (4), 494 (1981).

    Article  CAS  Google Scholar 

  24. C. C. Chu, “Hydrolytic Degradation of Polyglycolic Acid: Tensile Strength and Crystallinity Study”, J. Appl. Polym. Sci., 26, 1727–1734 (1981).

    Article  CAS  Google Scholar 

  25. C. C. Chu and May Louie, “A Chemical Means to Examine the Degradation Phenomena of Polyglycolic Acid Fibers”, J. Appl. Polym. Sci., 30, 3133–3141 (1985).

    Article  CAS  Google Scholar 

  26. F. N. Hurt, “The Stabilization of Knitted Fabrics”, “Textile Institute and Industry”, 230–233 (1966).

    Google Scholar 

  27. S. A. Wesolowski, W. Lieberg, W. Golaski and C. Fries, “Knitted Arterial Prosthesis with Optimum Characteristics”, Circulation 28, 825 (1963).

    Google Scholar 

  28. C. C. Chu and N. D. Campbell, “Scanning Electron Microscopic Study of the Hydrolytic Degradation of Polyglycolic Acid”, J. Biomed. Mater. Res., 16 (4), 417–430 (1980).

    Article  Google Scholar 

  29. N. D. Miller and D. F. Williams, “The In Vivo and In Vitro Degradation of Poly(glycolic acid) Suture Materials As a Function of Applied Strain”, Biomaterials, 5 (6), 365–368 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Chu, C.C., Lecaroz, L.E. (1987). Design and in Vitro Testing of Newly Made Bicomponent Knitted Fabrics for Vascular Surgery. In: Gebelein, C.G. (eds) Advances in Biomedical Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1829-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1829-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9022-3

  • Online ISBN: 978-1-4613-1829-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics