Calcification of Polymeric Biomaterials in Long-Term Cardiovascular Uses

  • Stephen D. Bruck


The calcification of polymeric materials in long-term medical implants such as cardiac assist devices, mechanical artificial hearts, and xenograft bioprostheses is a complex phenomenon, and apparently involves biochemical, physiological, physico-chemical, and species-related parameters. Biochemical explanation implicate the Ca2+ binding amino acid, gamma-carboxyglutamic acid, and other vitamin K-dependent plasma proteins and blood clotting factors, such as atherocalcin, osteocalcin, protein C, prothrombin (factor II), and factors IX and X. Physiological parameters of calcium homeostasis depend on the intricate interactions between calcitonin, parathorme, and vitamin D. These regulate the calcium and phosphorous (hydroxyapatite) in the bone and respond rapidly to various stimuli in readjusting the extracellular calcium levels from the bone. In the realm of physico-chemical parameters of polymeric biomaterials, I have proposed elsewhere that the propensity of polymers to sorption and permeation (in addition to surface phenomena of adsorption) of plasma components and drugs may be important in the calcification process of prostheses. This prediction was validated by our recent experimental findings.


Artificial Heart Blood Clotting Factor Binding Amino Acid Recent Experimental Finding Tamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Suttie and C. H. Jackson, Physiological Reviews, 57, 1–70 (1977).Google Scholar
  2. 2.
    C. T. Esmon, Blood, 62, 1155–1158 (1983).Google Scholar
  3. 3.
    H. Colucci, J. M. Stassen and D. Collen, J. Clin. Invest., 74, 200–204 (1984).CrossRefGoogle Scholar
  4. 4.
    T. Drakenberg, P. Fernlund, P. Roepstorff and J. Stenflo, Proc. Natl. Acad. Sci., U.S.A., 80, 1802–1806 (1983).CrossRefGoogle Scholar
  5. 5.
    G. E. Mortimore, in: “Best & Taylor’s Physiological Basis of Medical Practice”, 10th edition, J. R. Brobeck, ed., Williams & Wilkins, Baltimore, 1979, chapter 5.Google Scholar
  6. 6.
    S. D. Bruck, Biomaterials, 2, 14–18 (1981).CrossRefGoogle Scholar
  7. 7.
    M. M. Silver, J. Pollock, M. D. Silver, W. G. Williams and G. A. Trusler, Am. J. Cardiol., 45, 685–696 (1980).CrossRefGoogle Scholar
  8. 8.
    W. S. Pierce, J. H. Donachy, G. Rosenberg and R. E. Baier, Science, 208, 601–603 (1980).CrossRefGoogle Scholar
  9. 9.
    V. J. Ferrans, S. W. Boyce, M. E. Billingham, M. Jones, T. Ishihara and W. C. Roberts, Am. J. Cardiol., 46, 721–734 (1980).CrossRefGoogle Scholar
  10. 10.
    S. D. Bruck, Int. J. Artif. Org., 2, 223–225 (1979).Google Scholar
  11. 11.
    E. Arbustini, M. Jones, R. D. Moses, E. E. Eidbo, R. J. Carroll and V. J. Ferrans, Am. J. Cardiol., 53, 1388–1396 (1984).CrossRefGoogle Scholar
  12. 12.
    S. D. Bruck, “Properties of Biomaterials in the Physiological Envirnment”, CRC Press, Boca Raton, Florida, 1980.Google Scholar
  13. 13.
    Jaromir Vasku, J. Cerny, M. Dostal, P. Urbanek, Jan Vasku, P. Guba, T. Sladek, V. Trbusek, Anna Vasku, B. Hartmannova, E. Urbanek, S. Dolezel, V. Pavlicek and P. Svoboda, Proceedings of the XI Annual Meeting of the European Society for Artificial Organs, Alpbach-Innsbruck, Austria, September 9–12, 1984, published in: Life Support Systems, vol. 2, Suppl. 1, p 242–244 (1984).Google Scholar
  14. 14.
    Jaromir Vasku, private communication.Google Scholar
  15. 15.
    S. D. Bruck, M. Kojima, Y. Kadoma and E. Masuhara, Med. Progr. Technol., 10, 161–169 (1983/1984).Google Scholar
  16. 16.
    S. D. Bruck: Rate-controlled drug release system. U. S. Patent No. 4,559,054, December 17, 1985.Google Scholar
  17. 17.
    S. D. Bruck, Proceedings of the XI Annual Meeting of the European Society for Artificial Organs, Alpbach-Innsbruck, Austria, September 9–12, 1984, published in: Life Support Systems, vol. 2, Suppl. 1, p 95–97 (1984).Google Scholar
  18. 18.
    S. H. Rahimtoola, Circulation, 71, 1–3 (1985).CrossRefGoogle Scholar
  19. 19.
    H. Hutten, Med. Prog. Technol., 10, 133–134 (1983/1984).Google Scholar
  20. 20.
    S. D. Bruck, Biomat., Med. Dev., Art. Org., 11, 271–280 (1983/1984).Google Scholar
  21. 21.
    J. G. Copeland, R. W. Emery, M. M. Levinson, J. Copeland, H. J. McAleer and J. E. Riley, Circulation (Part II), 72, II-7–II-12 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Stephen D. Bruck
    • 1
  1. 1.Biomedical Technology Risk Assessment GroupStephen D. Bruck Associates, Inc.BethesdaUSA

Personalised recommendations