Skip to main content

Use of Mössbauer Spectroscopy in the Study of IV–VI Semiconductors

  • Chapter
Industrial Applications of the Mössbauer Effect
  • 103 Accesses

Abstract

The IV–VI semiconductor group has received much attention over the last 15 years because it may be used in several different types of technological applications, such as optoelectronic devices like photovoltaic detectors and tunable infrared diode lasers, and in thermoelectric energy conversion, The technological properties of this group are directly related to both their fundamental properties and their methods of synthesis. For instance, some pseudobinary semiconductors, such as Pb1-x SnxTe, have a composition-dependent energy gap which, according to the proposal of Dimmock [1], has a band model which can be made arbitrarily small by varying the stoichiometry, i.e., the lead to tin ratio, as shown in Figure 1. However, the commonly used single crystal growth methods from the melt induce a significant concentration gradient along the growth axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. O. Dimmock, J. Melngailis, and A. Y. Strauss, Phys. Rev. Lett. 16, 1193 (1966).

    Article  Google Scholar 

  2. V. Fano, Prog. Crystal Growth Charach. 3, 287 (1981).

    Article  Google Scholar 

  3. V. Fano, E. Maniezzi, I. Ortalli, and R. Pergolari, Materials Chemistry, 7, 509 (1982).

    Article  Google Scholar 

  4. V. Fano and I. Ortalli, J. Phys. Chem. Solids, 37, 729 (1976).

    Article  Google Scholar 

  5. T. L. Koval1chik and Yu. P. Maslakovets,Zh. Texh. Fiz. 26, 2417 (1956).

    Google Scholar 

  6. J. Dannon, Rev. Mod. Phys. 36, 459 (1964).

    Google Scholar 

  7. V. Fano and I. Ortalli, J. Mater. Science 12, 210 (1977).

    Article  Google Scholar 

  8. V. Fano and I. Ortalli, J. Chem. Phys. 61, 5017 (1974).

    Article  Google Scholar 

  9. J. K. Lees and P. A. Flinn, J. Chem. Phys. 48, 882 (1968).

    Article  Google Scholar 

  10. A. Antonini, V. Fano, I. Ortalli, and A. Vera, Phys. Stat. Sol. (b) 114, 585 (1982).

    Article  Google Scholar 

  11. A. Antonini, V. Fano, and I. Ortalli, Phys. Stat. Sol. (b) 120, K15 (1983).

    Article  Google Scholar 

  12. Y. N. Tsang and M. L. Cohen, Solid State Com. 10, 871 (1972).

    Article  Google Scholar 

  13. S. H. Wengle, Phys.Lett. 45A, 401 (1973).

    Google Scholar 

  14. J. S. Stevens and W. L. Gettys, Mössb. Eff. Data, Decemb. 14, 1981 (India).

    Google Scholar 

  15. T. C. Gibb, R. Greatrex, N. N. Greenwood, and A. C. Sarmo, J. Chem. Soc., A212 (1970).

    Google Scholar 

  16. H. Krebs, Acta Cryst. 9, 95 (1956).

    Article  Google Scholar 

  17. S. L. Ruby and G. K. Shenoy, in “Mössbauer Isomer Shifts”, G. K. Shenoy and F. E. Wagner, eds., North-Holland Publ. p. 627 (1978).

    Google Scholar 

  18. V. Fano, G. Fedeli, and I. Ortalli, Solid State Comm. 22, 467 (1977).

    Article  Google Scholar 

  19. I. Ortalli, G. Fedeli, K. L. I. Kobayashi, and K. F. Komatsubara, Journal de Physique 40, C2 - 696 (1979).

    Google Scholar 

  20. G. Shirane and Y. Yamada, Phys. Rev. 117, 858 (1969).

    Article  Google Scholar 

  21. J. P. Canner, C. M. Yagnik, R. Gerson, and J. James, Journ. Appl. Phys. 42, 4708 (1971).

    Article  Google Scholar 

  22. M. Izumi, Y. Hamaguchi, K. F. Komatsubara, and Y. Kato, J. Phys. Soc. Japan 38, 443 (1975).

    Article  Google Scholar 

  23. O. Hatta and K. L. I.Kobayashi, Solid State Communication 22, 775 (1977).

    Article  Google Scholar 

  24. I. Ortalli, Ferroelectrics, 54, 325 (1984).

    Article  Google Scholar 

  25. J. L. Birman, Journal de Physique 29, C4–151 (1968).

    Article  Google Scholar 

  26. M. Lefkowitz, M. Shields, G. Dolling, W. J. C. Buyers, and R. A. Cowley, J. Phys. Soc. Japan Suppl. 28, 249 (1970).

    Google Scholar 

  27. V. Fano, E. Maniezzi, I. Ortalli, N. Burriesci, M. Petrera, Journal de Physique 40, C2–624 (1979).

    Google Scholar 

  28. V. V. Chekin, O. P. Balkashin, and G. D. Sultanov, Ukr. Fiz. Zh. 14, 102 (1969).

    Google Scholar 

  29. A. Rigamonti and G. Petrini, Phys. Status Solidi, 41, 581 (1970).

    Article  Google Scholar 

  30. R. C. Knauer, Phys. Lett. 33A, 313 (1970).

    Article  Google Scholar 

  31. V. Fano, E. Maniezzi, and I. Ortalli, Journal de Physique, 41, Cl–325 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ortalli, I., Fano, V. (1986). Use of Mössbauer Spectroscopy in the Study of IV–VI Semiconductors. In: Long, G.J., Stevens, J.G. (eds) Industrial Applications of the Mössbauer Effect. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1827-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1827-9_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9021-6

  • Online ISBN: 978-1-4613-1827-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics