Skip to main content

Mössbauer Spectroscopy as a Tool for Studying Hydrometallurgical Treatments of Copper-Iron-Sulfides

  • Chapter
Industrial Applications of the Mössbauer Effect

Abstract

Chalcopyrite, CuFeS2, is by far the most abundant copper-bearing mineral, and forms the basis of the major copper deposits currently being exploited. In flotation concentrates chalcopyrite is often accompanied by one or more of the following minerals; bornite, Cu5FeS4, pyrite, FeS2, pyrrhotite, Fe1-xS, or hematite, α-Fe2O3. Present copper extraction technology relies on smelting of concentrates, which is polluting and energy inefficient, and substantial effort has been directed towards hydrometallurgical treatment of copper concentrates [1,2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Habashi, in “Chalocopyrite, Its Chemistry and Metallurgy”, pp. 45–135, McGraw-Hill, New York (1978).

    Google Scholar 

  2. G. Thorsen, in “Topics in Nonferrous Extractive Metallurgy”, R. Barkin, ed., Critical Reports on Applied Chemistry, vol. 1, pp. 1–41, Blackwell, Oxford (1980).

    Google Scholar 

  3. W. Petruk, CIM Bull., 146 (1976).

    Google Scholar 

  4. D. C. Price and J. P. Chilton, Hydrometall. 5, 381 (1980).

    Article  Google Scholar 

  5. M. Borran, J. M. Demarthe, H. Renon, and F. Boratin, Metall. Trans. B. 12B, 269 (1981).

    Google Scholar 

  6. J. E. Dutrizac, Metall. Trans. B. 12B, 371 (1981).

    Article  Google Scholar 

  7. J. E. Dutrizac, Metall. Trans. B. 13B, 303 (1982).

    Article  Google Scholar 

  8. G. W. Warren, M. E. Wadsworth, and S. M. El-Raghy, Metall. Trans. B. 13B, 571 (1982).

    Article  Google Scholar 

  9. B. Pesic and F. A. Olson, Metall. Trans. B. 14B, 577 (1983).

    Article  Google Scholar 

  10. B. Pesic and F. A. Olson, Hydrometall., 12, 195 (1984).

    Article  Google Scholar 

  11. S. A. Fysh and P. E. Clark, Hydrometall. 10, 285 (1983).

    Article  Google Scholar 

  12. G. W. McDonald, T. J. Volovic, J. A. Dumesic, and S. H. Langer, Hydrometall. 13, 125 (1984).

    Article  Google Scholar 

  13. R. Dimitrov, A. Hekimova, S. Asenov, T. Ruskov, and T. Tomov, Thermochim. Acta 40, 349 (1980).

    Article  Google Scholar 

  14. G. P. Demopoulos and P. A. Distin, Hydrometall. 1, 111 (1983).

    Article  Google Scholar 

  15. S. A. Fysh and P. E. Clark, Phys. Chem. Minerals 8, 257 (1982).

    Article  Google Scholar 

  16. D. L. Williamson, T. W. Guettinger, and D. W. Dickerhoof, in “Mössbauer Spectroscopy and Its Chemical Applications”, Adv. in Chemistry Series, 194, pp. 177–208, Amer. Chem. Soc., Washington (1981).

    Google Scholar 

  17. S. A. Fysh and P. E. Clark, Hydrometall. 10, 285 (1983).

    Article  Google Scholar 

  18. S. A. Fysh, J. D. Cashion, and P. E. Clark, Clays Clay Min. 31, 293 (1983).

    Article  Google Scholar 

  19. G. Dehe, B. Siedel, and W. Meisel, Nucl. Instr. and Meth. 133, 381 (1976).

    Article  Google Scholar 

  20. W. Meisel, in “Proc. 5th Int. Conf. on Mössbauer Spectroscopy Bratislava”, M. Hucl and T. Zencik, eds., Nuclear Information Centre, Prague (1973).

    Google Scholar 

  21. H. N. Ok and C. S. Kim, Nuovo Cimento 28B, 138 (1975).

    Article  Google Scholar 

  22. M. S. Jaghadeesh, H. M. Nagarathna, P. A. Montano, and M. S. Seehra, Phys. Rev. B, 23, 2350 (1981).

    Article  Google Scholar 

  23. B. J. Evans, R. G. Johnson, F. E. Senftie, C. Blaine-Cecil, and F. Dulong, Geochim. Cosmochim. Acta 46, 761 (1982).

    Article  Google Scholar 

  24. F. E. Huggins and G. P. Huffman, in “Analytical Methods for Coal and Coal Products”, pp. 371–423, vol. III, C. Karr, Jr., ed., Academic Press, New York (1979).

    Google Scholar 

  25. J. B. Goodenough and G. A. Fatseas, J. Solid State Chem. 41, 1 (1982).

    Article  Google Scholar 

  26. J. L. Jambor and J. E. Dutrizac, Can. Mineral., 21, 101 (1983).

    Google Scholar 

  27. P. A. Montano, Fuel 56, 397 (1977).

    Article  Google Scholar 

  28. G. K. Shenoy, J. M. Friedt, M. Maletta, and S. L. Ruby, Mössbauer Effect Methodology 9, 277 (1974).

    Google Scholar 

  29. S. A. Fysh and J. B. Lee, Proc. 5th Process Technology Conference, Iron and Steel Society, AIME, 187 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Fysh, S.A. (1986). Mössbauer Spectroscopy as a Tool for Studying Hydrometallurgical Treatments of Copper-Iron-Sulfides. In: Long, G.J., Stevens, J.G. (eds) Industrial Applications of the Mössbauer Effect. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1827-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1827-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9021-6

  • Online ISBN: 978-1-4613-1827-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics