Skip to main content

The Behavioral Effects of Opiates

  • Chapter
Handbook of Psychopharmacology
  • 83 Accesses

Abstract

This chapter will examine the effects of opiates on behavior, which immediately raises the questions of what are “opiates” and what constitutes “behavior.” Although both these terms can encompass widely varying domains, for the purpose of this chapter, they will not be very rigidly defined. Opiate will be used to denote chemicals with opium or morphine-like effects regardless of whether they are derived from plant or animal sources or whether they are synthetic. The term opioid will be used in a more restrictive sense, being reserved for substances endogenous to the mammalian central nervous system and synthetic analogs of them that have opiate like properties. Behavior will be used in a broad sense of the word, including any response of striated, smooth, or cardiac muscle, as well as secretion of glands. This approach will allow the examination of topics that are relatively simple and about which an instructive amount is known and may provide useful models for the examination of the role of opiates in more complex behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahren, B., and Lundquist, I., 1984, Effects of naloxone on basal and stimulated insulin secretion in the mouse, Eur. J. Pharmacol. 102: 135–139.

    PubMed  CAS  Google Scholar 

  • Akil, H., Mayer, D., and Liebeskind, J., 1972, Comparaison chez le rat entre l’analgesie induite par stimulation de la substance grise periaqueducale et l’analgesia morphinique, C. R. Acad Sci. 274: 3603–3605.

    CAS  Google Scholar 

  • Akil, H., Madden, J., Patrick, R. L., and Barchas, J. D., 1976a, Stress-induced increase in endogenous opiate peptides: Concurrent analgesia and its partial reversal by naloxone, in: Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, ed.), Elsevier, North Holland, pp. 63–70.

    Google Scholar 

  • Akil, H., Mayer, D. J., and Liebeskind, J. C., 1976b, Antagonism of stimulation-produced analgesia by the narcotic antagonist, naloxone, Science 191: 961–962.

    PubMed  CAS  Google Scholar 

  • Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachaturian, H., and Walker, J. M., 1984, Endogenous opioids: Biology and function, Annu. Rev. Neurosci. 7: 223–256.

    PubMed  CAS  Google Scholar 

  • Albus, K., and Herz, A., 1972, Inhibition of behavioural and EEG activation induced by morphine acting on lower brain-stem structures, Electroencephalogr. Clin. Neurophysiol. 33: 579–590.

    CAS  Google Scholar 

  • Albus, K., Schott, M., and Herz, A., 1970, Interaction between morphine and morphine antagonists after systemic and intraventricular administration, Eur. J. Pharmacol. 12: 53–64.

    PubMed  CAS  Google Scholar 

  • Appel, N. M., and Van Loon, G. R., 1983, Activation of angiotensin II receptors in brain potentiates the stimulating effect of endogenous opioid neurons on central sympathetic outflow, Peptides 4: 59–62.

    PubMed  CAS  Google Scholar 

  • Arndt, J. O., Mikat, M., and Parasher, C., 1984, Fentanyl’s analgesic, respiratory, and cardiovascular actions in relation to dose and plasma concentration in unanesthetized dogs, Anesthesiology 61: 355–361.

    PubMed  CAS  Google Scholar 

  • Arnsten, A. F. T., Segal, D. S., Neville, H. J., Hillyard, S. A., Janowski, D. S., Judd, L. L., and Bloom, F. E., 1983, Naloxone augments electrophysiological signs of selective attention in man, Nature 304: 725–726.

    PubMed  CAS  Google Scholar 

  • Azami, J., Llewelyn, M. B., and Roberts, M. H. T., 1982, The contribution of nucleus reticularis paragigantocellularis and nucelus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique, Pain 12:229–246.

    PubMed  CAS  Google Scholar 

  • Baldwin, B. A., and Parrott, R. F., 1985, Effects of intracerebroventricular injection of naloxone on operant feeding and drinking in pigs, Pharmacol. Biochem. Behav. 22: 37–40.

    PubMed  CAS  Google Scholar 

  • Barton, C., Basbaum, A. I., and Fields, H. L., 1980, Dissociation of supraspinal and spinal actions of morphine: A quantitative evaluation, Brain Res. 188: 487–498.

    PubMed  CAS  Google Scholar 

  • Basbaum, A. I., Marley, N., and O’keefe, J., 1975, Effects of spinal cord lesions on the analgesic properties of electrical brain stimulation, in: Advances in Pain Research and Therapy: Proceedings of the First World Congress on Pain (J. J. Bonica and D. G. Albe-Fessard, eds.), Raven Press, New York, p. 268.

    Google Scholar 

  • Beitel, R. E., and Dubner, R., 1976, Sensitization and depression of C-polymodal nociceptors by noxious heat applied to the monkey’s face, in: Proceedings of the First World Congress on Pain (J. J. Bonica and D. Albefessard, eds.), Raven Press, New York, pp. 149–153.

    Google Scholar 

  • Belenky, G. L., Gelinas-Sorell, D., Kenner, J. R., and Holaday, J. W., 1983, Evidence for delta receptor involvement in the postictal antinociceptive responses to electroconvulsive shock in rats, Life Sci. 33: 585–586.

    Google Scholar 

  • Beleslin, D. B., Samardzic, R., Krstic, S. K., and Micic, D., 1982, Differences in central effects of β-endorphin and enkephalins: β-Endorphin a potent psychomotor stimulant, Neuropharmacology 21: 99–102.

    PubMed  CAS  Google Scholar 

  • Belluzzi, J. D., and Stein, L., 1977, Enkephalin may mediate euphoria and drive-reduction reward, Nature 266: 556–557.

    PubMed  CAS  Google Scholar 

  • Benton, D., 1984, The long-term effects of naloxone, dibutyryl cyclic CMP, and chlorpromazine on aggression in mice monitored by an automated device, Aggress. Behav. 10: 79–90.

    CAS  Google Scholar 

  • Berman, R. F., Lee, J. A., Olson, K. L., and Goldman, M. S., 1984, Effects of naloxone on ethanol dependence in rats, Drug Alcohol Dependence 13: 245–254.

    CAS  Google Scholar 

  • Bernatsky, G., Doi, T., and Jurna, I., 1983, Effects of intrathecally administered pentobarbital and naloxone on the activity evoked in ascending axons of the rat spinal cord by stimulation of afferent A and C fibres. Further evidence for a tonic endorphinergic inhibition in nociception, Arch. Pharmacol. 323: 211–216.

    Google Scholar 

  • Bertiere, M. C., Sy, T. M., Baigts, F., Mandenoff, A., and Apfelbaum, M., 1984, Stress and sucrose hyperphagia: Role of endogenous opiates, Pharmacol. Biochem. Behav. 20: 675–680.

    PubMed  CAS  Google Scholar 

  • Bhargava, H. N., 1983, Binding of (3H)spiroperidol to striatal membranes of rats treated chronically with morphine. Influence of pro-leu-gly-NH2 and cyclo(leu-gly), Neuropharmacology 22: 1357–1362.

    PubMed  CAS  Google Scholar 

  • Bielajew, C., and Shizgal, P., 1982, Behaviorally derived measures of conduction velocity in the substrate for rewarding medial forebrain bundle stimulation, Brain Res. 237: 107–119.

    PubMed  CAS  Google Scholar 

  • Blair, R., Cytryniak, H., Shizgal, P., and Amit, Z., 1980, Heroin, but not levorphanol produces explosive motor behavior in naloxone-treated rats, Psychopharmacology 69: 313–314.

    PubMed  CAS  Google Scholar 

  • Bloom, F., Segal, D., Ling, N., and Guillemin, R., 1976, Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness, Science 194: 630–632.

    PubMed  CAS  Google Scholar 

  • Blum, I., Munitz, H., Shalev, A., and Roberts, E., 1984, Naloxone may be beneficial in the treatment of tardive dyskinesia, Clin. Neuropharmacol. 7: 265–267.

    PubMed  CAS  Google Scholar 

  • Boada, J., Feria, M., and Sanz, E., 1981, Inhibitory effect of naloxone on the ethanol- induced antinociception in mice, Pharmacol. Res. Commun. 13: 673–679.

    PubMed  CAS  Google Scholar 

  • Bodnar, R. J., Sharpless, N. S., Kordower, J. H., Potegal, M. and Barr, G. A., 1982, Analgesic responses following adrenal demedullation and peripheral catecholamine depletion, Physiol. Behav. 29: 1105–1109.

    PubMed  CAS  Google Scholar 

  • Bodnar, R. J., Nilaver, G., Wallace, M. M., Badillo-Martinez, D., and Zimmerman, E. A., 1984, Pain threshold changes in rats following central injection of beta-endorphin, met-enkephalin, vasopressin or oxytocin antisera, Int. J. Neurosci. 24: 149–160.

    PubMed  CAS  Google Scholar 

  • Bonica, J. J., 1980, Pain research and therapy: past and current status and future needs, in: Pain Discomfort and Humanitarian Care (L. K. Y. Ng and J. J. Bonica, eds.), Elsevier, New York, pp. 1–46.

    Google Scholar 

  • Bouras, C., Taban, C. H., and Constantinidis, J., 1984, Mapping of enkephalins in human brain. An immunohistofluorescence study on brains from patients with senile and presenile dementia, Neuroscience 12: 179–190.

    PubMed  CAS  Google Scholar 

  • Bowker, R. M., Westlund, K. N., Sullivan, M. C., Wilber, J. F., and Coulter, J. D., 1983, Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex, Brain Res. 288: 33–48.

    PubMed  CAS  Google Scholar 

  • Bozarth, M. A., 1982, Opiate reward mechanisms mapped by intracranial self-administration, in: Neurobiology of Opiate Reward Mechanisms (J. E. Smith and J. D. Lane, eds.), Raven Press, New York.

    Google Scholar 

  • Bozarth, M. A., and Wise, R. A., 1981a, Intracranial self-administration of morphine into the ventral tegmental area in rats, Life Sci. 28: 551–555.

    PubMed  CAS  Google Scholar 

  • Bozarth, M. A., and Wise, R. A., 1981b, Heroin reward is dependent on a dopamingergic substrate, Life Sci. 29:1881–1886.

    CAS  Google Scholar 

  • Bozarth, M., and Wise, R. A., 1984, Anatomically distant opiate receptor fields mediate reward and physical dependence, Science 224: 516–518.

    PubMed  CAS  Google Scholar 

  • Brain, P. F., Jones, S. E., Brain, S., and Benton, D., 1984, Sequence analysis of social behavior illustrating the actions of 2 antagonists of endogenous opioids, in: Ethopharmacological Aggression Behavior (K. A. Miczek, M. R. Kruk, and B. Olivier, eds.), Liss, New York, pp. 43–58.

    Google Scholar 

  • Brambilla, F., Facchinetti, F., Petraglia, F., Vanzulli, L., and Genazzani, A. R., 1984, Secretion pattern of endogenous opioids in chronic schizophrenia, Am. J. Psychiatry 141: 1183–1188.

    PubMed  CAS  Google Scholar 

  • Britt, M. D., and Wise, R. A., 1983, Ventral tegmental site of opiate reward: Antagonism by a hydrophilic opiate receptor blocker, Brain Res. 258: 105–108.

    CAS  Google Scholar 

  • Britton, K. T., Stewart, R. D., and Risch, S. C., 1983, Benzodiazepines attenuate stimulated beta-endorphin release, Psychopharmacol. Bull. 19: 757–759.

    CAS  Google Scholar 

  • Bunney, W. C., Massari, V. J., and Pert, A., 1984, Chronic morphine-induced hyperactivity in rats is altered by nucleus accumbens and ventral tegmental lesions, Psychopharmacology 82: 318–321.

    PubMed  CAS  Google Scholar 

  • Burks, T. F., and Grubb, M. N., 1974, Sites of acute morphine tolerance in intestine, J. Pharmacol. Exp. Ther. 191: 518–526.

    PubMed  CAS  Google Scholar 

  • Burleigh, D. E., Galligan, J. J., and Burks, T. F., 1981, Subcutaneous morphine reduces intestinal propulsion in rats partly by a central action, Eur. J. Pharmacol. 75: 283–287.

    PubMed  CAS  Google Scholar 

  • Butler, P. D., and Bodnar, R. J., 1984, Potentiation of foot shock analgesia by thyrotropin releasing hormone, Peptides 5: 635–640.

    PubMed  CAS  Google Scholar 

  • Carter, D. A., and Lightman, S. L., 1984, Inhibition of vasopressin secretion by a kappa- opiate receptor agonist, Neuroendocrinol. Lett. 6: 95–100.

    CAS  Google Scholar 

  • Cervero, F., Schouenborg, J., and Sjolund, B. H., 1981, Effects of conditioning stimulation of somatic and visceral afferent fibres on viscero-somatic reflexes, J. Physiol. 317: 27–28.

    Google Scholar 

  • Chang, K-J., 1984, Opioid peptides have actions on the immune system, Trends Neurosci. 7: 234–235.

    CAS  Google Scholar 

  • Charness, M. E., Gordon, A. S., and Diamond, I., 1983, Ethanol modulation of opiate receptors in cultured neural cells, Science 222: 1246–1248.

    PubMed  CAS  Google Scholar 

  • Chung, J. M., Fang, Z. R., Cargill, C. L., and Willis, W. D., 1983, Prolonged, naloxone- reversible inhibition of the flexion reflex in the cat, Pain 15: 35–54.

    Google Scholar 

  • Clarke, G., and Patrick, G., 1983, Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe, Neurosci. Lett. 39: 175–180.

    PubMed  CAS  Google Scholar 

  • Cohen, M. R., Cohen, R. M., Pickar, D., Weingartner, H., and Murphy, D. L., 1983, High-dose naloxone infusions in normals, Arch. Gen. Psychiatry 40: 613–619.

    PubMed  CAS  Google Scholar 

  • Cohen, M. R., Cohen, R. M., Pickar, D., Sunderland, T., Mueller, E. A., III, and Murphy, D. L., 1984, High dose naloxone in depression, Biol. Psychiatry 19: 825–832.

    PubMed  CAS  Google Scholar 

  • Cohen, M. R., Cohen, R. M., Pickar, D., and Murphy, D. L., 1985, Naloxone reduces food intake in humans, Psychosom. Med. 47: 132–138.

    PubMed  CAS  Google Scholar 

  • Cooper, S. J., 1983, Benzodiazepine-opiate antagonist interactions in relation to anxiety and appetite, Trends Pharmacol. Sci. 4: 456–458.

    CAS  Google Scholar 

  • Cooper, S. J., and Sanger, D. J., 1984, Endorphinergic mechanisms in food, salt and water intake—an overview, Appetite 5: 1–6.

    PubMed  CAS  Google Scholar 

  • Corbett, D., and Wise, R. A., 1980, Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study, Brain Res. 185: 1–15.

    PubMed  CAS  Google Scholar 

  • Costa, E., Guidotti, A., Hanbauer, I., and Saiani, L., 1983, Modulation of nicotinic receptor function by opiate recognition sites highly selective for met5-enkephalin- [arg6phe7]l, Fed. Proc. 42: 2946–2952.

    PubMed  CAS  Google Scholar 

  • Costall, B., and Naylor, R. J., 1974, A role for the amygdala in the development of the cataleptic and stereotypic actions of the narcotic agonists and antagonists in the rat, Psychopharmacology 35: 203–214.

    CAS  Google Scholar 

  • Cowan, A., and Gmerek, D. E., 1982, In vivo studies with ICI 154, 129, a putative delta receptor antagonist, Life Sci. 31: 2213–2216.

    PubMed  CAS  Google Scholar 

  • Czech, D. A., Blake, M. J., and Stein, E. A., 1984, Drinking behavior is modulated by CNS administration of opioids in the rat, Appetite 5: 15–24.

    PubMed  CAS  Google Scholar 

  • Davis, G. C., Bunney, W., E. Jr., Defraites, E. G., Kleinman, J. E., Van Kammen, D. P., Post, R. M., and Wyatt, R. J., 1977, Intravenous naloxone administration in schizophrenia and affective illness, Science 197: 74–77.

    PubMed  CAS  Google Scholar 

  • de Caro, G., Micossi, L. G., and Venturi, F., 1979, Drinking behaviour induced by intra-cerebroventricular administration of enkephalins to rats, Nature277: 51–52.

    PubMed  Google Scholar 

  • Dehen, H., Willer, J. C., Prier, S., Boureau, F., and Cambier, J., 1978, Congenital insensitivity to pain and the “morphinelike” analgesic system, Pain 5: 351–358.

    PubMed  CAS  Google Scholar 

  • Deviche, P., and Schepers, G., 1984, Intracerebroventricular injection of ostrich beta- endorphin to satiated pigeons induces hyperphagia but not hyperdipsia, Peptides 5: 691–694.

    PubMed  CAS  Google Scholar 

  • Deviche, P., and Wohland, A., 1984, Opiate antagonists stereoselectively attenuate the consumption of food but not of water by pigeons, Pharmacol. Biochem. Behav. 21: 507–512.

    PubMed  CAS  Google Scholar 

  • Devoize, J-L., Rigal, F., Eschalier, A., Trolese, J-F. and Renoux, M., 1984, Influence of naloxone on antidepressant drug effects in the force swimming test in mice, Psychopharmacology 84: 71–75.

    PubMed  CAS  Google Scholar 

  • Dewey, W. L., Snyder, J. W., Harris, L. S., and Howes, J. F., 1969, The effect of narcotics and narcotic antagonists on the tail-flick response in spinal mice, J. Pharm. Pharmacol. 21: 548–550.

    PubMed  CAS  Google Scholar 

  • Dewitte, P., 1984, Naloxone reduces alcohol intake in a free-choice procedure even when both drinking bottles contain saccharin sodium or quinine substances, Neuropsychobiology 12: 73–77.

    CAS  Google Scholar 

  • Dick, P., Grandjean, M. E., and Tissot, R., 1983, Successful treatment of withdrawal symptoms with delta sleep-inducing peptide, a neuropeptide with potential agonistic activity on opiate receptors, Neuropsychobiology 10: 205–208.

    PubMed  CAS  Google Scholar 

  • Doi, T., and Jurna, I., 1982, Intrathecal pentobarbital prevents naloxone-induced facilitation of the tail-flick response in the rat, Neurosci Lett. 32: 81–84.

    PubMed  CAS  Google Scholar 

  • Domjan, M., and Siegel, S., 1983, Attenuation of the aversive and analgesic effects of morphine by repeated adminsitration: Different mechanisms, Physiol. Psychol. 11: 155–158.

    CAS  Google Scholar 

  • Dostrovsky, J. O., and Deakin, J. F. W., 1977, Periaqueductal grey lesions reduce morphine analgesia in the rat, Neurosci. Lett 4: 99–103.

    PubMed  CAS  Google Scholar 

  • Duggan, A. W., and North, R. A., 1983, Electrophysiology of opioids. 3, Pharmacol. Rev. 35: 219–282.

    PubMed  CAS  Google Scholar 

  • Dum, J., and Herz, A., 1984, Endorphinergic modulation of neural reward systems indicated by behavioral changes, Pharmacol. Biochem. Behav. 21: 259–266.

    PubMed  CAS  Google Scholar 

  • Dumont, M., and Lemaire, S., 1984, Opioid receptors in bovine adrenal medulla, Can. J. Physiol. Pharmacol. 62: 1284–1291.

    PubMed  CAS  Google Scholar 

  • Emrich, H. M., Guenther, R., and Dose, M., 1983, Current perspectives in the pharmacopsychiatry of depression and mania, Neuropharmacology 22: 385–388.

    PubMed  CAS  Google Scholar 

  • Eshel, Y., and Korczyn, A. M., 1985, Circling behavior induced by phencyclidine in mice and its inhibition by naloxone, Experientia 41: 73–74.

    PubMed  CAS  Google Scholar 

  • Evans, C. J., Erdelyi, E., Weber, E., and Barchas, J. D., 1983, Identification of pro-opiomelanocortin-derived peptides in the human adrenal medulla, Science 221: 957–960.

    PubMed  CAS  Google Scholar 

  • Facchinetti, F., Sandrini, G., Petraglia, F., Alfonsi, E., Nappi, G., and Genazzani, A. R., 1984, Concomitant increase in nociceptive flexion reflex threshold and plasma opioids following transcutaneous nerve stimulation, Pain 19: 295–304.

    PubMed  CAS  Google Scholar 

  • Faden, A. I., and Feuerstein, G., 1983, Hypothalamic regulation of the cardiovascular and respiratory systems: Role of specific opiate receptors, Br. J. Pharmacol. 79: 997–1002.

    PubMed  CAS  Google Scholar 

  • Faden, A. I., and Jacobs, T. P., 1983, Dynorphin induces partially reversible paraplegia in the rat, Eur. J. Pharmacol. 91: 321–324.

    PubMed  CAS  Google Scholar 

  • Faden, A. I., Jacobs, T. P., Smith, G. P., Green, B., and Zivin, J. A., 1983, Neuropeptides in spinal cord injury: Comparative experimental models, Peptides 4: 631–634.

    PubMed  CAS  Google Scholar 

  • Fanselow, M. S., Sigmundi, R. A., and Bolles, R. C., 1980, Naloxone pretreatment enhances shock-elicited aggression, Physiol. Psychol. 8: 369–371.

    CAS  Google Scholar 

  • Faris, P., Komisurak, B., Watkins, L., and Mayer, D. J., 1983, Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia, Science 219: 310–312.

    PubMed  CAS  Google Scholar 

  • Fekete, M., Drago, F., Van Ree, J. M., Bohus, B., Wiegant, V. M., and De Wied, D., 1983, Naltrexone-sensitive behavioral actions of the ACTH 4-9 analog (ORG 2766), Life Sci. 32: 2193–2204.

    PubMed  CAS  Google Scholar 

  • Fekete, M. I. K., Kanyicska, B., Szentendrei, T., and Stark, E., 1984, Loss of sensitivity to morphine induced by prolonged ACTH treatment, Pharmacol. Biochem. Behav. 20: 879–882.

    PubMed  CAS  Google Scholar 

  • Feldberg, W., and Wei, E., 1978a, Central sites at which morphine acts when producing cardiovascular effects, J. Physiol. 275: 57.

    Google Scholar 

  • Feldberg, W., and Wei, E., 1978b, Central cardiovascular effects of enkephalins and C- fragment oflipotropin, J. Physiol. 280:18.

    Google Scholar 

  • Feurstein, G., and Faden, A. I., 1982, Hypothalamic sites for cardiovascular regulation by mu, delta, or kappa opioid agonists, Life Sci. 31: 2197–2200.

    Google Scholar 

  • Florez, J., and Mediavilla, A., 1977, Respiratory and cardiovascular effects of met- enkephalin applied to the ventral surface of the brain stem, Brain Res. 138: 585–590.

    PubMed  CAS  Google Scholar 

  • Frenk, H., 1983, Pro- and anticonvulsant actions of morphine and the endogenous opioids: Involvement and interactions of multiple opiate and non-opiate systems, Brain Res. Rev. 6: 197–210.

    CAS  Google Scholar 

  • Frenk, H., and Stein, B. E., 1984, Endogenous opioids mediate ECS-induced catalepsy at supraspinal levels, Brain Res. 303: 109–112.

    PubMed  CAS  Google Scholar 

  • Frenk, H., Urca, G., and Liebeskind, J. C., 1978, Epileptic properties of leucine- and methionine-enkephalin: Comparison with morphine and reversibility by naloxone, Brain Res. 147: 327–337.

    PubMed  CAS  Google Scholar 

  • Frenk, H., Liban, A., Balamuth, R., and Urca, G., 1982, Opiate and non-opiate aspects of morphine induced seizures, Brain Res. 253: 253–261.

    PubMed  CAS  Google Scholar 

  • Frenk, H., Watkins, L. R., and Mayer, D. J., 1984a, Differential behavioral effects induced by intrathecal microinjection of opiates: Comparison of convulsive and cataleptic effects produced by morphine, methadone, and D-Ala2-methionine-enkephalinamide, Brain Res. 299: 31–42.

    CAS  Google Scholar 

  • Frenk, H., Watkins, L. R., Miller, J., and Mayer, D. J., 1984b, Nonspecific convulsions are induced by morphine but not D-Ala2-methionine-enkephalinamide at cortical sites, Brain Res. 299: 51–59.

    CAS  Google Scholar 

  • Gallagher, M., 1982, Naloxone enhancement of memory processes: Effects of other opiate antagonists, Behav. Neural. Biol. 35: 375–382.

    PubMed  CAS  Google Scholar 

  • Gallagher, M., King, R. A., and Young, N. B., 1983, Opiate antagonists improve spatial memory, Science 221: 975–976.

    PubMed  CAS  Google Scholar 

  • Galligan, J. J., and Burks, T. F., 1982, Opioid peptides inhibit intestinal transit in the rat by a central mechanism, Eur. J. Pharmacol. 85: 61–68.

    PubMed  CAS  Google Scholar 

  • Galligan, J. J., Mosberg, H. I., Hurst, R., Hruby, V. J., and Burks, T. F., 1984, Cerebral delta-opioid receptors mediate analgesia but not the intestinal motility effects of intra- cerebroventricularly administered opioids, J. Pharmacol. Exp. Ther. 229: 641–648.

    PubMed  CAS  Google Scholar 

  • Geller, E. B., Hawk, C., Keinath, S. H., Tallarida, R. J., and Adler, M. W., 1983, Subclasses of opioids based on body temperature change in rats—acute subcutaneous administration, J. Pharmacol. Exp. Ther. 225: 391–398.

    PubMed  CAS  Google Scholar 

  • Gerber, G. J., Sing, J., and Wise, R. A., 1981, Pimozide attenuates lever pressing for water reinforcement in rats, Pharmacol. Biochem. Behav. 14: 201–205.

    PubMed  CAS  Google Scholar 

  • Gessa, G. L., Paglietti, E., and Quarantotti, B. P., 1979, Induction of copulatory behavior in sexually inactive rats by naloxone, Science 204: 203–205.

    PubMed  CAS  Google Scholar 

  • Gillman, M. A., and Sandyk, R., 1985, Reversal of captopril-induced psychosis with naloxone, Am. J. Psychiatry 142: 270.

    PubMed  CAS  Google Scholar 

  • Giraud, A. S., Dockray, G. J., and Williams, R. G., 1984, Immunoreactivity met-enkephalin arg6 in rat brain, and bovine brain, gut and adrenal, J. Neurochem. 43: 1236–1242.

    PubMed  CAS  Google Scholar 

  • Gonzalez, Y., Fernandez-Tome, M. P., Sanchez-Franco, F., and Del Rio, J., 1984, Antagonism of diazepam-induced feeding in rats by antisera to opioid peptides, Life Sci. 35: 1423–1430.

    PubMed  CAS  Google Scholar 

  • Gosnell, B. A., Waggoner, D. W., Morley, J. E., and Levine, A. S., 1985, The pineal gland and opiate-induced feeding, Physiol. Behav. 34: 1–6.

    PubMed  CAS  Google Scholar 

  • Griffiths, E. C., Slater, P., and Widdowson, P. S., 1983, Effects of opioids, neurotensin and thyrotrophin releasing hormone on rectal temperature after application to periaqueductal grey region of rat brain, J. Physiol. (London) 342: 38 P.

    Google Scholar 

  • Haddad, G. G., Schaeffer, J. I., and Chang, K. J., 1984, Opposite effect of the δ- and μ-opioid receptor agonists on ventilation in conscious adult dogs, Brain Res. 323: 73–82.

    PubMed  CAS  Google Scholar 

  • Hahn, E. F., 1984, Interaction of naloxone and sodium chloride intake on body weight gain in WKY and SHR rats, Res. Commun. Chem. Pathol. Pharm. 44: 339–346.

    CAS  Google Scholar 

  • Haigler, H. J., and Spring, D. D., 1978, Comparison of analgesic and behavioral effects of [D-Ala2] met-enkephalinamide and morphine in mesencephalic reticular formation of rats, Life Sci. 23: 1229–1240.

    PubMed  CAS  Google Scholar 

  • Hammond, D. L., and Proudfit, H. K, 1980, Effects of locus coeruleus lesions on morphine-induced antinociception, Brain Res. 188: 79–91.

    PubMed  CAS  Google Scholar 

  • Hardy, J. D., Wolff, H. G., and Goodell, H., 1952, Pain Sensations and Reactions, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Hayes, R. L., Bennett, G. J., Newlon, P., and Mayer, D. J., 1976, Analgesic effects of certain noxious and stressful manipulations in the rat, Soc. Neurosci Abstr. 2: 939.

    Google Scholar 

  • Hayes, R. L., Bennett, G. J., Newlon, P. G., and Mayer, D. J., 1978a, Behavioral and physiological studies on non-narcotic analgesia in the rat elicited by certain environmental stimuli, Brain Res. 155: 69–90.

    CAS  Google Scholar 

  • Hayes, R. L., Price, D. D., Bennett, G. J., Wilcox, G. L., and Mayer, D. J., 1978b, Differential effects of spinal cord lesions on narcotic and non-narcotic suppression of nociceptive reflexes: Further evidence for the physiologic multiplicity of pain modulation, Brain Res. 155: 91–101.

    PubMed  CAS  Google Scholar 

  • Hayes, R. L., Katayama, Y., Watkins, L. R., and Becker, D. P., 1984, Bilateral lesions of the dorsolateral funiculus of the cat spinal cord: Effects on basal nociceptive reflexes and nociceptive suppression produced by cholinergic activation of the pontine para- brachial region, Brain Res. 311: 267–280.

    PubMed  CAS  Google Scholar 

  • Herling, S., 1983, Naltrexone blocks the response-latency increasing effects but not the discriminative effects of diazepam in rats, Eur. J. Pharmacol. 88: 121–124.

    PubMed  CAS  Google Scholar 

  • Hiller, J. M., Pearson, J., and Simon, E. J., 1973, Distribution of stereospecific binding of the potent narcotic analgesic etorphine in the human brain: Predominance in the limbic system, Res. Commun. Chem. Pathol. Pharm. 6: 1052–1062.

    CAS  Google Scholar 

  • Holaday, J. W., 1983, Cardiovascular effects of endogenous opiate systems, Annu. Rev. Pharmacol. Toxicol. 23: 541–594.

    PubMed  CAS  Google Scholar 

  • Holaday, J. W., 1984, Neuropeptides in shock and traumatic injury—sites and mechanisms of action, in: Neuroendocrine Perspectives (E. E. Muller and R. M. MacLeod, eds.), Elsevier Scientific Publishing, New York, pp. 161–200.

    Google Scholar 

  • Holaday, J. W., and Faden, A. I., 1978, Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock, Nature 275: 450–451.

    PubMed  CAS  Google Scholar 

  • Holaday, J. W., and Faden, A. I., 1982, Selective cardiorespiratory differences between third and fourth ventricular injections on “mu” and “delta” opiate agonists, Fed. Proc. 41: 1468.

    Google Scholar 

  • Holaday, J. W., and Loh, H. H., 1981, Neurobiology of beta-endorphin and related peptides, in: Hormonal Proteins and Peptides (C. H. Li, ed.), Academic Press, New York, pp. 202–290.

    Google Scholar 

  • Holaday, J. W., and Tortella, F. C., 1984, Multiple opioid receptors: Possible physiological functions of mu and delta binding sites in vivo, in: Central and Peripheral Endorphins: Basic and Clinical Aspects (E. E. Mueller and A. R. Genazzani, eds.), Raven Press, New York, pp. 237–250.

    Google Scholar 

  • Holaday, J. W., and Ward, S. J., 1982, Morphine-induced bradycardia is predominantly mediated at mu sites, whereas morphine-induced hypotension may involve both mu and delta opioid receptors, Soc. Neurosci. Abst. 8: 389.

    Google Scholar 

  • Holaday, J. W., Loh, H. H., and Li, C. H., 1978, Unique behavioral effects of beta-endorphin and their relationship to thermoregulation and hypothalamic function, Life Sci. 22: 1525–1536.

    PubMed  CAS  Google Scholar 

  • Holaday, J. W., D’Amato, R. J., Ruvio, B. A., and Faden, A. I., 1982a, Action of naloxone and TRH on the autonomic regulation of circulation, in: Advances in Biochemical Psychopharmacology (E. Costa and M. Trabucchi, eds.), Raven Press, New York, pp. 353–362.

    Google Scholar 

  • Holaday, J. W., Ruvio, B. A., and Sickel, J., 1982b, Morphine exacerbates the cardiovascular pathophysiology of endotoxic shock in rats, Circ. Shock 9: 169.

    Google Scholar 

  • Holaday, J. W., Gilbeau, P. W., Smith, C. G., and Pennington, L. L., 1984, Multiple opioid receptors in the regulation of neuroendocrine responses in the conscious rat and monkey, in: Opioid Modulation of Endocrine Function (G. Delitala, M. Motta, and M. Serio, eds.), Raven Press, New York, pp. 21–32.

    Google Scholar 

  • Holden, D., 1985, ADAMHA funding pressed, Science 227: 147–149.

    PubMed  CAS  Google Scholar 

  • Holmes, L. J., and Wise, R. A., 1985, Contralateral circling induced by tegmental morphine: Anatomical localization, pharmacological specificity, and phenomenology, Brain Res. 326: 19–26.

    PubMed  CAS  Google Scholar 

  • Hughes, G. S., Jr., 1984, Naloxone and methylprednisolone sodium succinate enhance sympathomedullary discharge in patients with septic shock, Life Sci. 35: 2319–2326.

    PubMed  CAS  Google Scholar 

  • Hughes, J., 1975, Search for the endogenous ligand of the opiate receptor, Neurosci. Res. Program Bull. 13: 55–58.

    CAS  Google Scholar 

  • Irwin, S., Houde, R. W., Bennett, D. R., Hendershot, L. C., and Seevers, M. H., 1951, The effects of morphine, methadone and meperidine on some reflex responses of spinal animals to nociceptive stimulation, J. Pharmacol. Exp. Ther. 101: 132–143.

    PubMed  CAS  Google Scholar 

  • Ito, K., Nakamura, H., Sato, A., and Sato, Y., 1983, Depressive effect of morphine on the sympathetic reflex elicited by stimulation of unmyelinated hindlimb afferent nerve fibers in anesthetized cats, Neurosci Lett. 39: 169–174.

    PubMed  CAS  Google Scholar 

  • Iversen, L. L., Iversen, S. D., Bloom, F. E. Vargo, T., and Guillemin, R., 1978, Release of enkephalin from rat globus pallidus in vitro, Nature 271: 679–680.

    PubMed  CAS  Google Scholar 

  • Iwata, N., and Sakai, Y., 1971, Effects of some narcotic analgesics and related compounds upon the extensor monosynaptic reflex inhibition from cutaneous nerve and high threshold muscle afferent, Jpn. J. Pharmacol 21: 447–454.

    PubMed  CAS  Google Scholar 

  • Jackson, H. C., and Sewell, R. D. E., 1984, The involvement of mu- and kappa- but not delta-opioid receptors in the body weight gain of suckling rats, Psychopharmacology 84: 143–144.

    PubMed  CAS  Google Scholar 

  • Jackson, H. D., and Sewell, R. D. E., 1985, Involvement of endogenous enkephalins in the feeding response to diazepam, Eur. J. Pharmacol 107: 389–392.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., 1978, Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray matter of rats, Science 201: 1032–1034.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., 1982, Dual actions of morphine on the central nervous system: parallel action of beta-endorphin and ACTH, Ann. NY Acad. Sci. 398: 272–290.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Lajtha, A., 1973, Morphine action at central nervous system sites in rat: Analgesia or hyperalgesia depending on site and dose, Science 182: 490–491.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Lajtha, A., 1974, Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat, Science 185: 1055–1057.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Wolf, G., 1981, Morphine and ACTH1-24: Correlative behavior excitation following microinjection in rat periaqueductal gray, Brain Res. 219: 214–219.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., Carol, M. and Russell, I. S., 1976, Morphine-induced rotation in naive, nonlesioned rats, Science 192: 261.

    PubMed  CAS  Google Scholar 

  • Jaffe, J. H., and Martin, W. R., 1980, Opioid analgesics and antagonsits, in: The Pharmacological Basis of Therapeutics (A. G. Gilman, L. S. Goodman, and A. Gilman, eds.), Macmillan, New York, pp. 494–534.

    Google Scholar 

  • Janal, M. N., Colt, E. W. D., Clark, W. C., and Glusman, M., 1984, Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: Effects of naloxone, Pain 19: 13–26.

    PubMed  CAS  Google Scholar 

  • Janssen, H. F., and Lutherer, L. O., 1980, Ventriculocisternal administration of naloxone protects against severe hypotension during endotoxin shock, Brain Res. 194: 608–612.

    PubMed  CAS  Google Scholar 

  • Jeffcoate, W. J., Herbert, M., Cullen, M. H., Hastings, A. G., and Walder, C. P., 1979, Prevention of effects of alcohol intoxication by naloxone, Lancet ii: 1157–1159.

    Google Scholar 

  • Jenck, F. P., Schmitt, P., and Karli, P., 1983, Morphine applied to the mesencephalic central gray suppresses brain stimulation induced escape, Pharmacol Biochem. Behav. 19: 301–308.

    PubMed  CAS  Google Scholar 

  • Johannessen, J. N., Watkins, L. R., and Mayer, D. J., 1984, Nonserotonergic origins of the dorsolateral funiculus in the rat ventral medulla, J. Neurosci. 4: 757–766.

    PubMed  CAS  Google Scholar 

  • Jungkinz, G., Nedopil, N., and Ruther, E., 1984, Acute effects of the synthetic analogue of methionine enkephalin FK 33–824 in schizophrenic patients. A double blind trial, Pharmacopsychiatry 17: 76–78.

    Google Scholar 

  • Kamerling, S. G., Martin, W. R., Wu, K. M., and Wettstein, J. C., 1983, Medullary kappa hyperalgesia mechanisms II. The effects of ethylketazocine administered into the fourth cerebral ventrical of the conscious dog, Life Sci. 33: 1839–1843.

    PubMed  CAS  Google Scholar 

  • Kameyama, T., and Ukai, M., 1983, Multi-dimensional analyses of behavior in mice treated with morphine, endorphins and (des-tyrosinel)-gamma-endorphin, Pharmacol Biochem. Behav. 19: 671–677.

    PubMed  CAS  Google Scholar 

  • Kasson, B. G., and George, R., 1983a, Endocrine influences on the actions of morphine. I. Alteration of target gland hormones, J. Pharmacol Exp. Ther. 224: 273–281.

    PubMed  CAS  Google Scholar 

  • Kasson , B. G., and George, R., 1983b, Endocrine influences on the actions of morphine. III. Responses to hypothalamic hormones, Neuroendocrinology 37: 416–420.

    PubMed  CAS  Google Scholar 

  • Kavaliers, M., Hirst, M., and Teskey, G. C., 1983, A functional role for an opiate system in snail thermal behavior, Science 220: 99–101.

    PubMed  CAS  Google Scholar 

  • Kavaliers, M., Hirst, M., and Teskey, G. C., 1984, Opioid-induced feeding in the slug, Limax maximus, Physiol. Behav. 33: 765–768.

    CAS  Google Scholar 

  • Kavaliers, M., Hirst, M., and Teskey, G. C., 1985, Nocturnal feeding in the mouse— opiate and pineal influence, Life Sci. 36: 973–980.

    PubMed  CAS  Google Scholar 

  • Kelsey, J. N., Belluzzi, J. D., and Stein, L., 1984, Does naloxone suppress self-stimulation by decreasing reward or by increasing aversion? Brain Res. 307: 55–60.

    PubMed  CAS  Google Scholar 

  • Khazan N., Young, G. A., El-Fakany, E. E., Hong, O., and Calligaro, D., 1984, Sigma receptors mediate the psychotomimetic effects of n-allylnormetazocine (SKF-10,047), but not its opioid agonistic-antagonistic properties, Neuropharmacology 23: 983–988.

    PubMed  CAS  Google Scholar 

  • Kinscheck, I. G., Watkins, L. R., and Mayer, D. J., 1984, Fear is not critical to classically conditioned analgesia: The effects of periaqueductal gray lesions and administration of chlordiazepoxide, Brain Res. 298: 33–44.

    PubMed  CAS  Google Scholar 

  • Kiser, R. S., Jackson, S., Smith, R., Rees, L. H., Lowry, P. J., and Besser, G. M., 1983, Endorphin-related peptides in rat cerebrospinal fluid, Brain Res. 288: 187–192.

    PubMed  CAS  Google Scholar 

  • Kishioka, A., Iguchi, Y., Ozaki, M., and Yamamoto, H., 1983, Effect of electrical lesioning of nucleus reticularis gigantocellularis of rat medulla oblongata on morphine analgesia, Folia Pharmacol Jpn. 82: 475–484.

    CAS  Google Scholar 

  • Kline, N. S., Li, C. H., Lehmann, H. E., Lajtha, A., Laski, E., and Cooper, T., 1977, Beta- endorphin-induced changes in schizophrenic and depressed patients, Arch. Gen. Psychiatry 34: 1111–1115.

    PubMed  CAS  Google Scholar 

  • Koll, W., Haase, J., Block, G., and Muhlberg, B., 1963, The predilective action of small doses of morphine on nociceptive spinal reflexes of low spinal cats, Int. J. Neuropharmacol. 2: 57–65.

    CAS  Google Scholar 

  • Kordower, H. H., and Bodnar, R. J., 1984, Vasopressin analgesia: Specificity of action and non-opioid effects, Peptides 5: 747–756.

    PubMed  CAS  Google Scholar 

  • Kovacs, G. L., Vescernyes, M., Laczi, F., Faludi, M., Telegdy, G., and Laszlo, F. A., 1985, Acute morphine treatment and morphine tolerance/dependence alter immunoreactive oxytocin levels in the mouse hippocampus, Brain Res. 328: 158–160.

    PubMed  CAS  Google Scholar 

  • Kruger, L., and Liebeskind, J. C., 1984, Advances in Pain Research and Therapy: Neural Mechanisms of Pain, Raven Press, New York.

    Google Scholar 

  • Kumazawa, T., Eguchi, K., and Tadaki, E., 1985, Naloxone-reversible respiratory inhibition induced by muscular thin-fiber afferents in decerebrated cats, Neurosci Lett. 53: 81–86.

    PubMed  CAS  Google Scholar 

  • LaGamma, E. F., Adler, J. E., and Black, I. B., 1984, Impulse activity differentially regulates [Leu]enkephalin and catecholamine characters in the adrenal medulla, Science 224: 1102–1104.

    PubMed  CAS  Google Scholar 

  • Lai, Y., and Chan, S. H. H., 1982, Antagonization of clonidine- and morphine-promoted antinociception by kainic acid lesion of nucleus reticularis gigantocellularis in the rat, Exp. Neurol. 78: 38–45.

    PubMed  CAS  Google Scholar 

  • Lal, H., Miksic, S., and Smith, N., 1976, Naloxone antagonism of conditioned hyperthermia: An evidence for release of endogenous opioid, Life Sci. 18: 971–976.

    PubMed  CAS  Google Scholar 

  • Largent, B. L., Gundlach, L., and Snyder, S. H., 1984, Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(l-propyl)piperidine, Proc. Natl. Acad. Sci. USA 81: 4983–4987.

    PubMed  CAS  Google Scholar 

  • Laubie, M., Schmitt, H., Vincent, M., and Remond, G., 1977, Central cardiovascular effects of morphinominetic peptides in dogs, Eur. J. Pharmacol. 46: 67–71.

    PubMed  CAS  Google Scholar 

  • Laubie, M., Schmitt, H., and Vincent, M., 1979, Vagal bradycardia produced by microinjections of morphine-like drugs into the nucleus ambiguus in anesthetized dogs, Eur. J. Pharmacol. 59: 287–291.

    PubMed  CAS  Google Scholar 

  • Leander, J. D., 1984, Kappa-opioid agonists and antagonists—effects on drinking and urinary output, Appetite 5: 7–14.

    PubMed  CAS  Google Scholar 

  • Leander, J. D., 1985, Behavioral effects of agonist and antagonist actions at kappa-opioid receptors, in: Behavioral Pharmacology: The Current Status: Neurology and Neurobiology (L. S. Seiden and R. L. Balster, eds.), Liss, New York, pp. 93–110.

    Google Scholar 

  • Levine, A. S., and Morley, J. E., 1983, Adrenal modulation of opiate induced feeding, Pharmacol. Biochem. Behav. 19: 403–406.

    PubMed  CAS  Google Scholar 

  • Lewis, J. W., Cannon, J. T., and Liebeskind, J. K., 1980, Opioid and nonopioid mechanisms of stress analgesia, Science 208: 623–625.

    PubMed  CAS  Google Scholar 

  • Lewis, J. W., Tordoff, M. G., Sherman, J. E., and Liebeskind, J. C., 1982, Adrenal medullary enkephalin-like peptides may mediate opioid stress analgesia, Science 217:557–559.

    PubMed  CAS  Google Scholar 

  • Lim, R. K. S., 1966, A revised concept of the mechanism of analgesia and pain, in: Pain (R. S. Knighton and P. R. Dumke, eds.), Little, Brown, Boston, pp. 117–154.

    Google Scholar 

  • Lotti, V. J., Lomax, P., and George, R., 1965, Temperature responses in the rat following intracerebral microinjection of morphine, J. Pharmacol. Exp. Ther. 150: 135–139.

    PubMed  CAS  Google Scholar 

  • Lyness, W. H., Friedle, N. M., and Moore, K. E., 1979, Destruction of dopaminergic nerve terminals in nucleus accumbens: Effect on d-amphetamine self-administration, Pharmacol. Biochem. Behav. 11: 553–556.

    PubMed  CAS  Google Scholar 

  • Macht, D. I., 1915, The history of opium and some of its preparations and alkaloids, JAMA 64: 477–481.

    CAS  Google Scholar 

  • Maier, S. F., Drugan, R. C., and Grau, J. W., 1982, Controllability, coping behavior, and stress-induced analgesia in the rat, Pain 12: 47–56.

    PubMed  CAS  Google Scholar 

  • Mannisto, P. T., Rauhala, P., Tuominen, R., and Mattila, J., 1984, Dual action of morphine on cold-stimulated thyrotropin secretion in male rats, Life Sci. 35: 1101–1108.

    PubMed  CAS  Google Scholar 

  • Mansour, A., and Valenstein, E. S., 1984, Morphine responsiveness and seizure proneness, Exp. Neurol. 85: 346–357.

    PubMed  CAS  Google Scholar 

  • Margules, D. L., Lewis, M. J., Shibuya, H., and Pert, C. B., 1978, Beta-endorphin is associated with overeating in genetically obese mice (ob/ob) and rats (fa/fa), Science 202: 988–991.

    PubMed  CAS  Google Scholar 

  • Margules, D. L., Boldman, B., and Finck, A., 1979, Hibernation: An opioid-dependent state? Brain Res. Bull. 4: 721–724.

    PubMed  CAS  Google Scholar 

  • Martin, W. R., 1983, Pharmacology of opioids. 4, Pharmacol. Rev. 35: 283–323.

    PubMed  CAS  Google Scholar 

  • Martinez, J. L., Jr., 1985, Central versus peripheral actions of Leu-enkephalin on acquisition of a one-way active avoidance response in rats, Brain Res. 327: 37–44.

    PubMed  CAS  Google Scholar 

  • Matthews, R. T., and German, D. C., 1982, Electrophysiological evidence for morphine excitation of ventral tegmental area dopamine neurons, Soc. Neurosci. Abstr. 8: 777.

    Google Scholar 

  • Mayer, D. J., and Hayes, R., 1975, Stimulation-produced analgesia: Development of tolerance and cross tolerance to morphine, Science 188: 941–943.

    PubMed  CAS  Google Scholar 

  • Mayer, D. J., and Price, D. D., 1976, Central nervous system mechanisms of analgesia, Pain 2: 379–404.

    PubMed  CAS  Google Scholar 

  • Mayer, D. J., and Price, D. D., 1982, A physiological and psychological analysis of pain: A potential model of motivation, in: The Physiological Mechanisms of Motivation (D. W. Pfaff, ed.), Springer-Verlag, New York, pp. 433–471.

    Google Scholar 

  • Mayer, D. J., and Watkins, L. R., 1984, Multiple endogenous opiate and nonopiate analgesia systems, in: Advances in Pain Research and Therapy (L. Kruger and J. C. Liebeskind, eds.), Raven Press, New York, pp. 253–276.

    Google Scholar 

  • Mayer, D. J., Wolfle, T. L., Akil, H., Carder, B., and Liebeskind, J. C., 1971, Analgesia from electrical stimulation in the brainstem of the rat, Science 174: 1351–1354.

    PubMed  CAS  Google Scholar 

  • Mayer, D. J., Price, D. D., and Becker, D. P., 1975, Neurophysiological characterization of the anterolateral spinal cord neurons contributing to pain perception in man, Pain 1: 51–58.

    PubMed  CAS  Google Scholar 

  • McGinty, J. F., and Bloom, F. E., 1983, Double immunostaining reveals distinctions among opioid peptidergic neurons in the medial basal hypothalamus, Brain Res. 278: 145–154.

    PubMed  CAS  Google Scholar 

  • McKay, L. D., Kenney, N. J., Edens, N. K, Williams, R. H., and Woods, S., 1981, Intra-cerebroventricular beta-endorphin increases food intake of rats, Life Sci. 29: 1429–1435.

    PubMed  CAS  Google Scholar 

  • McLaughlin, C. L., and Baile, C. A., 1984a, Feeding behavior responses of Zucker rats to naloxone, Physiol. Behav. 32: 755–762.

    PubMed  CAS  Google Scholar 

  • McLaughlin, C. L., and Baile, C. A., 1984b, Increased sensitivity of Zucker obese rats to naloxone is present at weaning, Physiol. Behav. 32: 929–934.

    PubMed  CAS  Google Scholar 

  • McNicholas, L. F., and Martin, W. R., 1984, New and experimental therapeutic roles for naloxone and related opioid antagonists, Drugs 27: 81–93.

    PubMed  CAS  Google Scholar 

  • Meisenberg, G., and Simmons, W. H., 1983, Centrally mediated effects of neurohypophyseal hormones, Neurosci. Biobehav. Rev. 7: 263–280.

    CAS  Google Scholar 

  • Melzack, R., 1973, The Puzzle of Pain, Basic Books, New York.

    Google Scholar 

  • Melzack, R., and Casey, K. L., 1968, Sensory, motivational and central control determinants of pain: A new conceptual model, in: The Skin Senses (D. Kenshalo, ed.) Charles C Thomas, Springfield, IL, pp. 423–439.

    Google Scholar 

  • Melzack, R., and Wall, P. D., 1965, Pain mechanisms: A new theory, Science 150: 971–979.

    PubMed  CAS  Google Scholar 

  • Mendelson, S. D., and Gorzalka, B. B., 1984, Cholecystokinin-octapeptide produces inhibition of lordosis in the female rat, Pharmacol. Biochem. Behav. 21: 755–760.

    PubMed  CAS  Google Scholar 

  • Meyerson, B. J., and Terenius, L., 1977, Beta-endorphin and male sexual behavior, Eur. J. Pharmacol. 42: 191.

    PubMed  CAS  Google Scholar 

  • Mickley, G. A., and Stevens, K. E., 1983, Endogenous opiates mediate radiogenic behavioral change, Science 220: 1185–1187.

    PubMed  CAS  Google Scholar 

  • Milke, D. H., and Gallant, D. M., 1977, Oral opiate antagonist in chronic schizophrenic—pilot study, Am. J. Psychiatry. 134: 1430.

    Google Scholar 

  • Millan, M. J., Przewlocki, R., Jerlicz, M., Gramsch, C., Hollt, V., and Herz, A., 1981, Stress-induced release of brain and pituitary beta-endorphin: Major role of endorphins in generation of hyperthermia, not analgesia, Brain Res. 208: 325–338.

    PubMed  CAS  Google Scholar 

  • Millan, M. H., Millan, M. J., and Herz, A., 1984, The hypothalamic paraventricular nucleus: Relationship to brain and pituitary pools of vasopressin and oxytocin as compared to dynorphin, beta-endorphin and related opioid peptides in the rat, Neuroendocrinology 38: 108–116.

    PubMed  CAS  Google Scholar 

  • Miller, G. C., Murgo, A. J., and Plotnikoff, N. P., 1983, Enkephalins-enhancement of active t-cell rosettes from lymphoma patients, Clin. Immunol. Immunopathol. 26:446–451.

    PubMed  CAS  Google Scholar 

  • Moore, J. E., 1983, Arginine vasopressin enhances retention of morphine tolerance, Pharmacol. Biochem. Behav. 19: 561–566.

    PubMed  CAS  Google Scholar 

  • Morley, J. E., and Levine, A. S., 1980, Stress-induced eating is mediated through endogenous opiates, Science 209: 259–1261.

    Google Scholar 

  • Morley, J. E., Levine, A. S., Nizielski, S., Gosnell, B. A., Plotka, E., Billington, C. J., and Seal, U. S., 1984, Species diversity and opioid feeding systems, in: Central and Peripheral Endorphins: Basic and Clinical Aspects, Physiopathological Aspects (E. E. Muller and A. R. Genazzani, eds.) Raven Press, New York, pp. 279–284.

    Google Scholar 

  • Murfin, R., Bennett, G. J., and Mayer, D. J., 1976, The effects of dorsolateral spinal cord (DLF) lesions on analgesia from morphine microinjected into the periaqueductal gray matter (PAG) of the rat, Soc. Neurosci. Abstr. 2: 946.

    Google Scholar 

  • Murphy, E. A., Porter, J. H., and Heath, G. F., 1985, Suppression of schedule-induced drinking and food-reinforced bar pressing by tail-pinch is not reversed by naloxone, Behav. Neural. Biol. 43: 86–99.

    PubMed  CAS  Google Scholar 

  • Musto, D. F., 1973, The American Disease, Yale University Press, New Haven, CT.

    Google Scholar 

  • Myers, W. D., Ng, K. T., and Singer, G., 1984, Effects of naloxone and buprenorphine on intravenous acetaldehyde self-injection in rats, Physiol. Behav. 33: 449–456.

    PubMed  CAS  Google Scholar 

  • Naber, D., Pickar, D., Post, R. M., Vankammen, D. P., Waters, R. N., Ballenger, J. C., Goodwin, F. K., and Bunney, W. E., 1981, Endogenous opoid activity and beta-endorphin immunoreactivity in CSF of psychiatric patients and normal volunteers, Am. J. Psychiatry 138: 1457–1462.

    PubMed  CAS  Google Scholar 

  • Naber, D., Nedopil, N., and Eben, E., 1984, No correlation between neuroleptic-induced increase of beta-endorphin serum level and therapeutic efficacy in schizophrenia, Br. J. Psychiatry 144: 651–653.

    PubMed  CAS  Google Scholar 

  • Nathan, P. W., and Smith, M. C., 1979, Clinico-anatomical correlation in anterolateral cordotomy, in: Advances in Pain Research and Therapy (J. J. Bonica, J. C. Liebeskind, and N. G. Albe-Fessard, eds.), Raven Press, New York, pp. 921–926.

    Google Scholar 

  • Neal, H., and Keane, P. E., 1978, The effects of local micro injections of opiates and enkephalins into the forebrain on the electrocorticogram of the rat, Electroencephalogr. Clin. Neurophysiol. 45: 655–665.

    PubMed  CAS  Google Scholar 

  • Nedopil, N., and Ruther, E., 1979, Effects of the synthetic analogue of methionin enkephalin FK 33 824 on psychotic symptoms, Pharmakopsychiat. Neuro-Psych. 12: 277–280.

    CAS  Google Scholar 

  • Nemeroff, C. B., Oosbahr, A. J., Manberg, P. J., Ervin, G. N., and Prange, A. J., 1979, Alterations in nociception and body temperature after intra-cisternal administration of neurotensin, beta-endorphin, other endogenous peptides and morphine, Proc. Natl. Acad. Sci. U.S.A. 76: 5368–5371.

    PubMed  CAS  Google Scholar 

  • Noordenbos, W., 1959, Pain, Elsevier, North Holland, Amsterdam.

    Google Scholar 

  • Oiltgen, P. R., Walsh, J. W., Hamann, S. R., Randall, D. C., Spurrier, W. A., and Myers, R. D., 1982, Hibernation “trigger”: Opioid-like inhibitory action on brain function of the monkey, Pharmacol. Biochem. Behav. 17: 1271–1274.

    Google Scholar 

  • Oley, N., Cordova, C., Kelly, M. L., and Bronzino, J. D., 1982, Morphine administration to the region of the solitary tract nucleus produces analgesia in rats, Brain Res. 236: 511–515.

    PubMed  CAS  Google Scholar 

  • Olson, R. D., Fernandez, R. C., Kastin, A. J., Olson, G. A., Delatte, S. W., von Almen, T. K, Erickson, D. G., and Hastings, D. C., 1981, Low doses of naloxone and MIF-1 peptides increase fluid consumption in rats, Pharmacol. Biochem. Behav. 15: 921–924.

    PubMed  CAS  Google Scholar 

  • Ossipov, M. H., and Gebhart, G. F., 1984, Light pentobarbital anesthesia diminishes the antinociceptive potency of morphine administered intracranially but not intrathecally in the rat, Eur. J. Pharmacol. 97: 137–140.

    PubMed  CAS  Google Scholar 

  • Ostrowski, N. L., Rowland, N., Foley, T. L., Nelson, J. L., and Reid, L. D., 1981, Morphine antagonists and consummatory behaviors, Pharmacol. Biochem. Behav. 14: 549–559.

    PubMed  CAS  Google Scholar 

  • Owen, M. D., Gisolfi, C. V., Reynolds, D. G., and Gurll, N. J., 1984, Autonomic effects of central injections of d-Ala2-metenkephalinamide (DAME) in the conscious monkey, Peptides 5: 737–742.

    PubMed  CAS  Google Scholar 

  • Pae, Y. S., Lai, H., and Horita, A., 1985, Hyperthermia in the rat from handling stress blocked by naltrexone injected into the preoptic-anterior hypothalamus, Pharmacol. Biochem. Behav. 22: 337–340.

    PubMed  CAS  Google Scholar 

  • Pang, I. H., Bernardinni, G. L., and Clark, W. G., 1984, Hyperthermic response of the cat to intraventricular injection of the opioid delta-receptor agonist D-Ala2-D-Leu5- enkephalin, Brain Res. Bull. 13: 263–268.

    PubMed  CAS  Google Scholar 

  • Pasternak, G. W., Gintzler, A. R., Houghten, R. A., Ling, G. S. F., Goodman, R. R., Spiegel, K., Nishimura, S., et al., 1983, Biochemical and pharmacological evidence for opioid receptor multiplicity in the central nervous system, Life Sci. 33:167–174.

    PubMed  CAS  Google Scholar 

  • Paterson, A. T., and Vickers, C., 1984, Saline drinking and naloxone: Light cycle dependent effects on social behaviour in male mice, Pharmacol. Biochem. Behav. 21: 495–500.

    PubMed  CAS  Google Scholar 

  • Pazos, A., and Florez, J., 1984, A comparative study in rats of the respiratory depression and analgesia induced by mu- and delta-opioid agonists, Eur. J. Pharmacol. 99: 15–22.

    PubMed  CAS  Google Scholar 

  • Penicaud, L., and Thompson, D., 1984, Effects of systemic intracerebroventricular naloxone injection on basal and 2-deoxy-D-glucose-induced ingestive behavior, Life Sci. 35: 2297–2302.

    PubMed  CAS  Google Scholar 

  • Pert, A., and Sivit, C., 1977, Neuroanatomical focus for morphine and enkephalin- induced hypermotility, Nature 265: 645–646.

    PubMed  CAS  Google Scholar 

  • Pert, C. B., and Snyder, S. H., 1973, Opiate receptor: Demonstration in nervous tissue, Science 179: 1011–1013.

    PubMed  CAS  Google Scholar 

  • Pert, A., and Yaksh, T., 1974, Sites of morphine induced analgesia in the primate brain: Relation to pain pathways, Brain Res. 80: 135–140.

    PubMed  CAS  Google Scholar 

  • Pert, C. B., Snowman, A. M., and Snyder, S. H., 1974, Localization of opiate receptor binding in synaptic membranes of rat brain, Brain Res. 70: 184–188.

    PubMed  CAS  Google Scholar 

  • Pert, C. B., Kuhar, M. J., and Snyder, S. H., 1975, Autoradiographic localization of the opiate receptor in rat brain, Life Sci. 16: 1849–1854.

    PubMed  CAS  Google Scholar 

  • Pertovaara, A., Kemppainen, P., Johansson, G., and Karonen, S. L., 1982, Ischemic pain nonsegmentally produces a predominant reduction of pain and thermal sensitivity in man: A selective role for endogenous opioids, Brain Res. 251: 83–92.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, A., Feuerstein, G., Kopin, I. J., and Faden, A. I., 1983, Cardiovascular and respiratory effects of mu-opiate and kappa-opiate agonists microinjected into the anterior hypothalmic brain area of awake rats, J. Pharmacol. Exp. Ther. 225: 735–741.

    PubMed  CAS  Google Scholar 

  • Phillips, A. G., and Broekkamp, C. L. E., 1980, Inhibition of intravenous cocaine self- administration by rats after microinjection of spiroperidol into the nucleus accumbens, Soc. Neurosci. Abstr. 6: 105.

    Google Scholar 

  • Phillips, A. G., and Lepiane, F. G., 1980, Reinforcing effects of morphine microinjection into the ventral tegmental area, Pharmacol. Biochem. Behav. 12: 965–968.

    PubMed  CAS  Google Scholar 

  • Plotnikoff, N. P., and Miller, G. C., 1983, Enkephalins as immunomodulators, Int. J. Immunopharmacol. 5: 437–442.

    PubMed  CAS  Google Scholar 

  • Pollerberg, G. E., Costa, T., Shearman, G. T., Herz, A., and Reid, L. D., 1983, Opioid antinociception and positive reinforcement are mediated by different types of opioid receptors, Life Sci. 33: 1549–1560.

    PubMed  CAS  Google Scholar 

  • Porreca, F., Filla, A., and Burks, T. F., 1983, Studies in vivo with dynorphin-(l-9): Analgesia but not gastrointestinal effects following intrathecal administration to mice, Eur. J. Pharmacol. 91: 291–294.

    PubMed  CAS  Google Scholar 

  • Porreca, F., Mosberg, H. I., Hurst, R., Hruby, V. J., and Burks, T. F., 1984, Roles of mureceptors, delta-receptors and kappa-opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse, J. Pharmacol. Exp. Ther. 230: 341–348.

    PubMed  CAS  Google Scholar 

  • Pottoff, P., Valentino, D., and Lal, H., 1979, Attenuation of morphine analgesia by lesions of the preoptic forebrain region in the rat, Life Sci. 24: 421–424.

    PubMed  CAS  Google Scholar 

  • Price, D. D., and Dubner, R., 1977, Neurons that subserve the sensory-discriminative aspects of pain, Pain 3: 307–338.

    PubMed  CAS  Google Scholar 

  • Price, D. D., and Mayer, D. J., 1975, Neurophysiological characterization of the anterolateral quadrant neurons subserving pain in M. mulatta, Pain 1: 59–72.

    CAS  Google Scholar 

  • Price, D. D., Hu, J. W., Dubner, R., and Gracely, R., 1977, Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses, Pain 3: 57–68.

    PubMed  CAS  Google Scholar 

  • Price, D. D., Hayes, R. L., Ruda, M., and Dubner, R., 1978, Spatial and temporal transformation of input to spinothalamic tract neurons and their relation to somatic sensation, J. Neurophysiol. 41: 933–947.

    PubMed  CAS  Google Scholar 

  • Proudfit, H. K., and Anderson, E. G., 1975, Morphine analgesia: Blockade by raphe magnus lesions, Brain Res. 98: 612–618.

    PubMed  CAS  Google Scholar 

  • Reynolds, D. V., 1969, Surgery in the rat during electrical analgesia induced by focal brain stimulation, Science 164: 444–445.

    PubMed  CAS  Google Scholar 

  • Rigter, H., 1978, Attenuation of amnesia in rats by systemically administered enkephalins, Science 200: 83–85.

    PubMed  CAS  Google Scholar 

  • Rigter, H., Greven, H., and Vanriezen, H., 1977, Failure of naloxone to prevent reduction of amnesia by enkephalins, Neuropharmacology 16: 545–547.

    PubMed  CAS  Google Scholar 

  • Riley, A. L., Zellner, D. A., and Duncan, H. J.., 1980, The role of endorphins in animal learning and behavior, Neurosci. Biobehav. Rev. 4: 69–76.

    PubMed  CAS  Google Scholar 

  • Rios, L. and Jacob, J., 1981, Comparisons des effects du chlorhydrate et de l’iodomethylate de naloxone sur le choc endotoxinique chez le rat anesthisie, Arch. Inst. Pasteur Tunis. 58: 313–327.

    PubMed  CAS  Google Scholar 

  • Ritzmann, R. F., Lee, J. M., and Fields, J. Z., 1983, Effect of peptides on morphine- induced tolerance and physical dependence, Psychopharmacol. Bull. 19: 321–324.

    Google Scholar 

  • Roberts, D. C. S., Corcoran, M. E., and Fibiger, H. C., 1977, On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine, Pharmacol. Biochem. Behav. 6: 615–620.

    PubMed  CAS  Google Scholar 

  • Roberts, D. C. S., Koob, G. F., Klonoff, P., and Fibiger, H. C., 1980, Extinction and recovery of cocaine self-administration following 6-hydroxy-dopamine lesions of the nucleus accumbens, Pharmacol. Biochem. Behav. 12: 781–787.

    PubMed  CAS  Google Scholar 

  • Roby, A., Willer, J-C., and Bussel, B., 1983, Effect of a synthetic enkephalin analogue on spinal nociceptive messages in humans, Neuropharmacology 22: 1121–1136.

    PubMed  CAS  Google Scholar 

  • Rodgers, R. J., 1977, Elevation of aversive threshold in rats by intra-amygdaloid injection of morphine sulphate, Pharmacol. Biochem. Behav. 6: 385–390.

    PubMed  CAS  Google Scholar 

  • Rodgers, R. J., 1978, Influence of intra-amygdaloid opiate injections on shock thresholds, tail-flick latencies and open field behaviour in rats, Brain Res. 153: 211–216.

    PubMed  CAS  Google Scholar 

  • Romangnano, M. A., and Hamill, R. W., 1984, Spinal sympathetic pathway: An enkephalin ladder, Science 225: 737–739.

    Google Scholar 

  • Rukebusch, Y., Bardon, T. H., and Pairet, M., 1984, Opioid control of the ruminant stomach motility: Functional importance of mu, kappa and delta receptors, Life Sci. 35: 1731–1738.

    Google Scholar 

  • Samanin, R., and Valzelli, L., 1971, Increase of morphine-induced analgesia by stimulation of the nucleus raphe dorsalis, Eur. J. Pharmacol. 16: 298–302.

    PubMed  CAS  Google Scholar 

  • Samson, H. H., and Doyle, T. F., 1985, Oral ethanol self-administration in the rat: Effect of naloxone, Pharmacol. Biochem. Behav. 22: 91–100.

    PubMed  CAS  Google Scholar 

  • Samson, W. K., McDonald, J. K., and Lumpkin, M. D., 1985, Naloxone-induced dissociation of oxytocin and prolactin releases, Neuroendocrinology 40: 68–71.

    PubMed  CAS  Google Scholar 

  • Sanberg, D. E., and Segal, M., 1978, Pharmacological analysis of analgesia and self-stimulation elicited by electrical stimulation of catacholamine nuclei in the rat brain, Brain Res. 151: 529–542.

    Google Scholar 

  • Satoh, M., and Takagi, H., 1971, Effect of morphine on the pre- and postsynaptic inhibitions in the spinal cord, Eur. J. Pharmacol. 14: 150–154.

    CAS  Google Scholar 

  • Schoemaker, H., and Davis, T. P., 1984, Differential in vitro metabolism of beta-endorphin in schizophrenia, Peptides 5: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Schull, J., Kaplan, H., and O’brien, C. P., 1981, Naloxone can alter experimental pain and mood in humans, Physiol. Pharmacol. 9: 245–251.

    CAS  Google Scholar 

  • Schultzberg, M., Lundberg, J. M., Hokfelt, T., Terenius, L., Brandt, J., Elde, R. P., and Goldstein, M., 1978, Enkephalinlike immunoreactivity in gland cells and nerve terminals of the adrenal medulla, Neuroscience 3: 1169–1186.

    PubMed  CAS  Google Scholar 

  • Schulz, R., Wilheim, A., and Dirlich, G., 1984, Intracerebral injection of different antibodies against endogenous opioids suggests alpha-neoendorphin participation in control of feeding behaviour, Naunyn Schmied Arch. Pharmacol. 326: 222–226.

    CAS  Google Scholar 

  • Shizgal, P., Bielajew, C., Corbett, D., Skelton, R., and Yeomans, J., 1980, Behavioral methods for inferring conduction velocity and anatomical linkage: I. Pathways connecting rewarding brain stimulation sites, J. Comp. Physiol. Psychol. 94: 227–237.

    PubMed  CAS  Google Scholar 

  • Simone, D. A., Bodnar, R. J., Goldman, E. J., and Pasternak, G. W., 1985, Involvement of opioid receptor subtypes in rat feeding behavior, Life Sci. 36: 829–834.

    PubMed  CAS  Google Scholar 

  • Sinclair, J. G., 1973, Morphine and meperidine on bulbospinal inhibition of the monosynaptic reflex, Eur. J. Pharmacol. 21: 111.

    PubMed  CAS  Google Scholar 

  • Sivam, S. P., and Ho, I. K, 1984, Antinociceptive and gastrointestinal effects of opiates: an analysis of the nature of the involvement of mu and delta receptors of the central nervous system in morphine-tolerant and non-tolerant mice, Neuropharmacology 23: 105–108.

    PubMed  CAS  Google Scholar 

  • Slizgi, G. R., Taylor, C. J., and Ludens, J. H., 1984, Effects of the highly selective kappa- opioid, U-50,488, on renal function in the anesthetized dog, J. Pharmacol. Exp. Ther. 230: 641–645.

    PubMed  CAS  Google Scholar 

  • Smith, J. E., Co, C., and Lane, J. D., 1984, Limbic muscarinic cholinergic and benzodiazepine receptor changes with chronic intravenous morphine and self-administration, Pharmacol. Biochem. Behav. 20: 443–450.

    PubMed  CAS  Google Scholar 

  • Sorensen, S. C., and Mattisson, K., 1978, Naloxone as an antagonist in severe alcohol intoxication, Lancet ii:688–689.

    Google Scholar 

  • Spiegel, K., Kourides, I. A., and Pasternak, G. W., 1982, Different receptors mediate morphine-induced prolactin and growth hormone release, Life Sci. 31: 2177–2180.

    PubMed  CAS  Google Scholar 

  • Spiraki, C., Fibiger, H. C., and Phillips, A. G., 1982, Attenuation by haloperidol of place preference conditioning using food reinforcement, Psychopharmacology 77: 379–382.

    Google Scholar 

  • Stewart, J. J., and Curd, C. D., 1984, Antipropulsive effects of central and peripheral morphine in the rat gastrointestinal tract, J. Pharm. Pharmacol. 36: 476–477.

    PubMed  CAS  Google Scholar 

  • Summy-Long, J. Y., Miller, D. S., Rosella-Dampman, L. M., Hartman, R. D., and Emmert, S. E., 1984, A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin, Brain Res. 309: 362–366.

    PubMed  CAS  Google Scholar 

  • Szechtman, H., Simantov, R., and Hershkowitz, M., 1981, Sexual behavior decreases pain sensitivity and stimulates endogenous opioids in male rats, Eur. J. Pharmacol. 70: 279–286.

    PubMed  CAS  Google Scholar 

  • Takagi, H., 1980, The nucleus reticularis paragigantocellularis as a site of analgesic action of morphine and enkephalin, Trends Pharmacol. Sci. 1: 182–184.

    CAS  Google Scholar 

  • Takagi, H., Matsumura, M., Yanai, A., and Ogiu, K., 1955, The effect of analgesics on the spinal reflex activity of the cat, Jpn. J. Pharmacol. 4: 176–187.

    PubMed  CAS  Google Scholar 

  • Takagi, H., Doi, T., and Akaike, A., 1976, Microinjection of morphine into the medial part of the bulbar reticular formation in rabbit and rat: Inhibitory effects on lamina V cells of spinal dorsal horn and behavioral analgesia, in: Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, ed.), North Holland, Amsterdam, pp. 191–198.

    Google Scholar 

  • Tang, F., Tang, J., Chou, J., and Costa, E., 1984, Age-related and diurnal changes in met5- enk-arg6-phe7 and met5-enkephalin contents of pituitary and rat brain structures, Life Sci. 35: 1005–1014.

    PubMed  CAS  Google Scholar 

  • Tapia-Arancibia, L., and Astier, H., 1983, Opiate inhibition of K+-induced TRH release from superfused mediobasal hypothalami in rats, Neuroendocrinology 37: 166–168.

    PubMed  CAS  Google Scholar 

  • Tepperman, F. S., Hirst, M., and Gowdey, C. W., 1981, Hypothalamic injection of morphine: Feeding and temperature responses, Life Sci. 28: 2459–2468.

    PubMed  CAS  Google Scholar 

  • Terenius, L., 1973, Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex, Acta Pharmacol. Toxicol. 32: 317–320.

    CAS  Google Scholar 

  • Terenius, L., Washlstrom, A., and Agren, H., 1977, Naloxone (NarcanR) treatment in depression: Clinical observations and effects on CSF endorphins and monoamine metabolites, Psychopharmacology 54: 31–33.

    PubMed  CAS  Google Scholar 

  • Terman, G. W., Shavit, Y., Lewis, J. W., Cannon, J. T., and Liebeskind, J. C., 1984, Intrinsic mechanisms of pain inhibition: activation by stress, Science 226: 1270–1277.

    PubMed  CAS  Google Scholar 

  • Teschemacher, H. J., Schubert, P., and Herz, A., 1973, Autoradiographic studies concerning the supraspinal site of the antinociceptive action of morphine when inhibiting the hindleg flexor reflex in rabbits, Neuropharmacology. 12: 123–132.

    PubMed  CAS  Google Scholar 

  • Teskey, G. C., Kavaliers, M., and Hirst, M., 1984, Social conflict activates opioid analgesic and ingestive behaviors in male mice, Life Sci. 35: 303–316.

    PubMed  CAS  Google Scholar 

  • Thornhill, J. A., and Saunders, W., 1984, Ventromedial and lateral hypothalamic injections of naloxone or naltrexone suppress the acute food intake of food-deprived rats, Appetite 5: 25–30.

    PubMed  CAS  Google Scholar 

  • Torebjork, H. E., 1974, Afferent C units responding to mechanical, thermal and chemical stimuli in human nonglabrous skin, Acta Physiol. Scand. 92: 374–390.

    PubMed  CAS  Google Scholar 

  • Tsou, K., 1963, Antagonism of morphine analgesia by the intracerebral microinjection of nalorphine, Acta Physiol Sin. 26: 332–337.

    Google Scholar 

  • Tsou, K., and Jang, C. S., 1964, Studies on the site of analgesic action of morphine by intracerebral micro-injection, Scientia Sinica 13: 1099–1109.

    PubMed  CAS  Google Scholar 

  • Turski, L., Havemann, IL, and Kuschinsky, K., 1983, The role of substantia nigra in motility of the rat. Muscular rigidity, body asymmetry and catalepsy after injection of morphine into the nigra, Neuropharmacology 22: 1039–1048.

    PubMed  CAS  Google Scholar 

  • Ukponmwan, O. E., Rupreht, J., and Dzoljic, M. R., 1984, REM sleep deprivation decreases the antinociceptive property of enkephalinase-inhibition, morphine and cold-water swim, Gen. Pharmacol 15: 255–258.

    PubMed  CAS  Google Scholar 

  • Urca, G., and Frenk, H., 1982, Systemic morphine blocks the seizures induced by intra- cerebroventricular (i. c. v.) injections of opiates and opioid peptides, Brain Res. 246: 121–126.

    PubMed  CAS  Google Scholar 

  • Van Ree, J. M., 1977, Multiple brain sites involved in morphine antinociception, J. Pharm. Pharmacol 29: 765–766.

    PubMed  Google Scholar 

  • Vanvugt, D. A., Bruni, J. F., and Meites, J., 1978, Naloxone inhibition of stress-induced increase in prolactin secretion, Life Sci. 22: 85–90.

    CAS  Google Scholar 

  • Vathy, I. U., Etgen, A. M., and Barfield, R. J., 1985, Effects of prenatal exposure to morphine on the development of sexual behavior in rats, Pharmacol Biochem. Behav. 22: 227–232.

    PubMed  CAS  Google Scholar 

  • Veith, J. L., Sandman, C. A., Walker, J. M., Coy, D. H., and Kastin, A. J., 1978, Systemic administration of endorphins selectively alters open field behavior of rats, Physiol Behav. 20: 539–542.

    PubMed  CAS  Google Scholar 

  • Verhoeven, W. M. A., Van Praag, H. M., and Van Ree, J. M., 1984, Repeated naloxone administration in schizophrenia, Psychiatr. Res. 12: 297–312.

    CAS  Google Scholar 

  • Vezina, P., and Stewart, J., 1985, Hyperthermia induced by morphine administration to the VTA of the rat brain: An effect dissociable from morphine-induced reward and hyperactivity, Life Sci. 36: 1095–1106.

    PubMed  CAS  Google Scholar 

  • Vigouret, J., Teschemacher, H. J., Albus, K., and Herz, A., 1973, Differentiation between spinal and supraspinal sites of action of morphine when inhibiting the hindleg flexor reflex in rabbits, Neuropharmacology 12: 111–121.

    PubMed  CAS  Google Scholar 

  • Vincent, S. R., Dalsgaard, C. J., Schultzberg, M., Holkfelt, T., Christensson, I., and Terenius, L., 1984, Dynorphin-immunoreactive neurons in the autonomic nervous system, Neuroscience 11: 973–988.

    PubMed  CAS  Google Scholar 

  • Volavka, J., Mallya, A., Baig, S., and Perez-Cruet, J., 1977, Naloxone in chronic schizophrenia, Science 196: 1227–1228.

    PubMed  CAS  Google Scholar 

  • Walker, L. A., and Murphy, J. C., 1984, Antinatriuretic effect of acute morphine administration in conscious rats, J. Pharmacol Exp. Ther. 229: 404–408.

    PubMed  CAS  Google Scholar 

  • Wallace, M., Willis, G., and Singer, G., 1984, The effect of naloxone on schedule- induced and other drinking, Appetite 5: 39–44.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., and Mayer, D. J., 1982a, Involvement of spinal opioid systems in foot- shock-induced analgesia: Antagonism by naloxone is possible only before induction of analgesia, Brain Res. 242: 309–316.

    CAS  Google Scholar 

  • Watkins, L. R., and Mayer, D. J., 1982b, Organization of endogenous opiate and non-opiate pain control systems, Science 216:1185–1192.

    CAS  Google Scholar 

  • Watkins, L. R., Griffin, G., Leichnetz, G. R., and Mayer, D. J., 1980, The somatotopic organization of the nucleus raphe magnus and surrounding brainstem structures as revealed by HRP slow-release gels, Brain Res. 181: 1–15.

    PubMed  CAS  Google Scholar 

  • Watkins,ha L. R., Cobelli, D. A., Faris, P., Aceto, M. D., and Mayer, D. J., 1982a, Opiate vs non-opiate footshock-induced analgesia: The body region shocked is a critical factor, Brain Res. 242: 299–308.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Cobelli, D. A., and Mayer, D. J., 1982b, Classical conditioning of front paw and hind paw footshock-induced analgesia (FSIA): Naloxone reversibility and descending pathways, Brain Res. 243:119–132.

    CAS  Google Scholar 

  • Watkins, L. R., Cobelli, D. A., and Mayer, D. J., 1982c, Opiate vs non-opiate footshock- induced analgesia (FSIA): Descending and intraspinal components, Brain Res. 245: 97–106.

    CAS  Google Scholar 

  • Watkins, L. R., Cobelli, D. A., Newsome, H. H., and Mayer, D. J., 1982d, Footshock- induced analgesia is dependent neither on pituitary nor sympathetic activation, Brain Res. 245:81–96.

    CAS  Google Scholar 

  • Watkins, L. R., Kinscheck, I. B., and Mayer, D. J., 1983a, The neural basis of footshock analgesia: The effect of periaqueductal gray lesions and decerebration, Brain Res. 276:317–324.

    CAS  Google Scholar 

  • Watkins, L. R., Young, E. G., Kinscheck, I. B., and Mayer, D. J., 1983b, The neural basis of footshock analgesia: The role of specific ventral medullary nuclei, Brain Res. 276:305–315.

    CAS  Google Scholar 

  • Watkins, L. R., Drugan, R., Hyson, R. L., Moye, T. B., Ryan, S. M., Mayer, D. J., and Maier, S. F., 1984a, Opiate and non-opiate analgesia induced by inescapable tail- shock: Effects of dorsolateral funiculus lesions and decerebration, Brain Res. 291: 325325–336.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Faris, P. L., Komisurak, B. R., and Mayer, D. J., 1984b, Dorsolateral funiculus and intraspinal pathways mediate vaginal stimulation-induced suppression of nociceptive responding in rats, Brain Res. 294:59–65.

    CAS  Google Scholar 

  • Watkins, L. R., Frenk, H., Miller, J., and Mayer, D. J., 1984c, Cataleptic effects of opiates following intrathecal administration, Brain Res. 299: 43–49.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Frenk, H., Miller, J., and Mayer, D. J., 1984d, Effect of spinal cord lesions on convulsive activity induced by intrathecal morphine, Brain Res. 310: 337–340.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Johannessen, J. N., Kinscheck, I. B., and Mayer, D. J., 1984e, The neurochemical basis of footshock analgesia: The role of spinal cord serotonin and norepinephrine, Brain Res. 290: 107–117.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Katayama, Y., Kinscheck, I. B., Mayer, D. J., and Hayes, R. L., 1984f, Muscarinic cholinergic mediation of opiate and nonopiate environmentally induced analgesias, Brain Res. 300: 231–242.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Kinscheck, I. B., and Mayer, D. J., 1984g, Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide, Science 224: 395–396.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Kinscheck, I. B., Kaufman, E. F. S., Miller, J., Frenk, H., and Mayer, D. J., 1985a, Cholecystokinin antagonists selectively potentiate analgesia induced by endogenous opiates, Brain Res. 327: 181–190.

    PubMed  CAS  Google Scholar 

  • Watkins, L. R., Kinscheck, I. B., and Mayer, D. J., 1985b, Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide, Brain Res. 327: 169–180.

    PubMed  CAS  Google Scholar 

  • Watson, S. J., Berger, P. A., Akil, H., and Barchas, J. D., 1978, Effects of naloxone on schizophrenia: Reduction in hallucinations in a subpopulation of subjects, Science 201: 73–76.

    PubMed  CAS  Google Scholar 

  • Wauquier, A., Bovill, J. G., and Sebel, P. S., 1984, Electroencephalographic effects of fentanyl-, sufentanil-, and alfentanil anaesthesia in man, Neuropsychobiology. 11: 203–206.

    PubMed  CAS  Google Scholar 

  • Webster, V. A. D., Griffiths, E. C., and Slater, P., 1983, Antinociceptive effects of thyrotrophin-releasing hormone and its analogues in the rat periaqueductal grey region, Neurosci. Lett. 42: 67–70.

    PubMed  CAS  Google Scholar 

  • Wei, E. T., Tseng, L. F., Loh, H. H., and Li, C. H., 1977, Comparison of the behavioral effects of beta-endorphin and enkephalin analogs, Life Sci. 21: 321–328.

    PubMed  CAS  Google Scholar 

  • Weiss, J., Thompson, M. L., and Shuster, L., 1984, Effects of naloxone and naltrexone on drug-induced hypothermia in mice, Neuropharmacology 23: 483–490.

    PubMed  CAS  Google Scholar 

  • Whitnall, M. H., Gainer, H., Cox, B. M., and Molineaux, C. J., 1983, Dynorphin-A-(l- 8) is contained within vasopressin neurosecretory vesicles in rat pituitary, Science 222: 1137–1139.

    PubMed  CAS  Google Scholar 

  • Wiesenfeld-Hallin, Z., and Sodersten, P., 1984, Spinal opiates affect sexual behaviour in rats, Nature 309: 257–258.

    PubMed  CAS  Google Scholar 

  • Wikler, A., and Frank, K., 1948, Hindlimb reflexes of chronic spinal dogs during cycles of addiction to morphine and methadone, J. Pharmacol. Exp. Ther. 94: 382–400.

    PubMed  CAS  Google Scholar 

  • Wilcox, R. E., and Levitt, R. A., 1979, Naloxone reversal of morphine catatonia: Role of caudate and periaqueductal gray, Pharmacol. Biochem. Behav. 9: 425–428.

    Google Scholar 

  • Willer, J. C., 1983, Nociceptive flexion reflexes as a tool for pain research in man, in: Motor Control Mechanisms in Health and Disease (J. E. Desmedt, ed.), Raven Press, New York, pp. 809–828.

    Google Scholar 

  • Willer, J. C., and Albe-Fessard, D., 1980, Electrophysiological evidence for a release of endogenous opiates in stress-induced analgesia in man, Brain Res. 198: 419–426.

    PubMed  CAS  Google Scholar 

  • Willer, J. C., Dehen, H., and Cambier, J., 1981, Stress-induced analgesia in humans: Endogenous opioids and naloxone-reversible depression of pain reflexes, Science 212: 689–690.

    PubMed  CAS  Google Scholar 

  • Willer, J. C., Roby, A., Boulu, P., and Albe-Fessard, D., 1982, Depressive effect of high frequency peripheral conditioning stimulation upon the nociceptive component of the human blink reflex. Lack of naloxone effect, Brain Res. 239: 322–326.

    PubMed  CAS  Google Scholar 

  • Wilson, L., and Dorosz, L., 1984, Possible role of the opioid peptides in sleep, Med. Hypoth. 14: 269–280.

    CAS  Google Scholar 

  • Wise, R. A., 1984, Neural mechanisms of the reinforcing action of cocaine, in: NIDA Research Monograph Cocaine: Pharmacology, Effects, and Treatment of Abuse (J. Grabowski, ed.), NIDA, Rockville, MD, pp. 15–33.

    Google Scholar 

  • Wise, R. A., Spindler, J., Dewit, H., and Gerber, G. J., 1978, Neuroleptic-induced “anhedonia” in rats: Pimozide blocks the reward quality of food, Science 201: 262–264.

    PubMed  CAS  Google Scholar 

  • Xenakis, S., and Sclafani, A., 1982, The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats, Pharmacol. Biochem. Behav. 16: 293–302.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., 1978, Opiate receptors for behavioral analgesia resemble those related to the depression of spinal nociceptive neurons, Science 199: 1231–1233.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Rudy, T. A., 1976, Chronic catheterization of the spinal subarachnoid space, Physiol. Behav. 17: 1031–1036.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Rudy, T. A., 1977, Studies on the direct spinal action of narcotics in the production of analgesia in the rat, J. Pharmacol. Exp. Ther. 202: 411–428.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., and Wilson, P. R., 1979, Spinal serotonin terminal system mediates antinociception, J. Pharmacol. Exp. Ther. 208: 446–453.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Yeung, J. C., and Rudy, T. A., 1976, Systematic examination in the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray, Brain Res. 114: 83–104.

    PubMed  CAS  Google Scholar 

  • Yeung, J. C., and Rudy, T. A., 1980a, Sites of antinociceptive action of systemically injected morphine—involvement of supraspinal loci as revealed by intracerebroventricular injection of naloxone, J. Pharmacol. Exp. Ther. 215: 626–632.

    PubMed  CAS  Google Scholar 

  • Yeung, J. C., and Rudy, T. A., 1980b, Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive action as revealed by concurrent intrathecal and intracerebroventricular injections of morphine, J. Pharmacol. Exp. Ther. 215:633–642.

    CAS  Google Scholar 

  • Yeung, J. C., Yaksh, T. L., and Rudy, T. A., 1975, Effects of brain lesions on the antinociceptive properties of morphine in rats, Clin. Exp. Pharm. Physiol. 2: 261–268.

    CAS  Google Scholar 

  • Yim, G. K. W., and Lowy, M. T., 1984, Opioids, feeding, and anorexias, Fed. Proc. 43: 2893–2896.

    PubMed  CAS  Google Scholar 

  • Young, E. G., Watkins, L. R., and Mayer, D. J., 1984, Comparison of the effects of ventral medullary lesions on systemic and microinjection morphine analgesia, Brain Res., 290: 119–129.

    PubMed  CAS  Google Scholar 

  • Young, G. A., 1980, Naloxone enhancement of punishment in the rat, Life Sci. 26:1787–1792.

    PubMed  CAS  Google Scholar 

  • Zagon, I. S., and McLaughlin, P. J., 1983, Increased brain size and cellular content in infant rats treated with an opiate antagonist, Science 221: 1179–1180.

    PubMed  CAS  Google Scholar 

  • Zagon, I. S., and McLaughlin, P. J., 1984, Naltrexone modulates body and brain development in rats: A role for endogenous opioid systems in growth, Life Sci. 35:2057–2064.

    Google Scholar 

  • Zagon, I. S., McLaughlin, P. J., and Zagon, E., 1984, Opiate, endorphins, and the developing organism: A comprehensive bibliography, 1982–1983, Neurosci. Biobehav. Rev. 8: 387–404.

    PubMed  CAS  Google Scholar 

  • Zetler, G., and Morsdorf, K. H., 1984, Effects of ceruletide and cholecystokinin octapeptide on eating in mice. Interactions with naloxone and the enkephalin analogue, FK33- 824, Naunyn Schmied Arch. Pharmacol. 325: 209–213.

    CAS  Google Scholar 

  • Zorman, G., Belcher, G., Adams, J. E., and Fields, H. L., 1982, Lumbar intrathecal naloxone blocks analgesia produced by microstimulation of the ventromedial medulla in the rat, Brain Res. 236: 77–89.

    PubMed  CAS  Google Scholar 

  • Zvartau, E. E., 1977, Action of naloxone on emotionally positive and antinociceptive effects of hypothalamic stimulation in rats, Bull. Exp. Biol. Med.-Engl. Tr. 88: 1306–1308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Mayer, D.J. (1987). The Behavioral Effects of Opiates. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1819-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1819-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9017-9

  • Online ISBN: 978-1-4613-1819-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics