The Electrophysiological and Biochemical Pharmacology of the Mesolimbic and Mesocortical Dopamine Neurons

  • Michael J. Bannon
  • Arthur S. Freeman
  • Louis A. Chiodo
  • Benjamin S. Bunney
  • Robert H. Roth


Since the early pioneering anatomical studies of Dahlström and Fuxe (1964), it has been known that midbrain dopamine (DA)-containing neurons project to and innervate not only the striatum but also various limbic regions. These observations and those of Ungerstedt (1971) led to the functional organization of midbrain DA neurons into the nigrostriatal and mesolimbic DA systems. However, in 1973, Thierry and colleagues presented biochemical evidence for the existence of DA in the cerebral cortex, independent of that normally present within the norepinephrine-containing neurons (Thierry et al, 1973a,b). Other work demonstrated that a DA-sensitive adenylate cyclase was present in the cortex (von Hungen and Roberts, 1973). Subsequent anatomical studies, which employed more sensitive fluorescence histochemical techniques, confirmed the presence of a mesocortical DA system (Berger et al., 1974, 1976; Hökfelt et al, 1974; Lindvall et al, 1977, 1978; Lindvall and Björklund, 1978a,b). During the last 10 years, much basic electrophysiological, pharmacological, and biochemical research has been directed toward providing a more detailed understanding of the functioning of these midbrain DA systems. The following review is an overview of those studies. The anatomy of these systems will also be discussed, as will the possible roles these systems play in conditioned and unconditioned behaviors. Although it is not within the scope of this discussion to review the nigrostriatal DA system exhaustively, reference will be made to studies of these neurons in order to assess similarities and differences among the midbrain DA pathways. Biochemical, behavioral, and anatomical aspects of the midbrain DA systems have been the topics of reviews in previous volumes of this Handbook (Sedvall, 1975; Iversen, 1977a; Lindvall and Björklund, 1978b).


Prefrontal Cortex Firing Rate Substantia Nigra Dopaminergic Neuron Nucleus Accumbens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K., and Bunney, B. S., 1973, Central dopaminergic neurons: Neurophysiological identification and responses to drugs, in: Frontiers in Catecholamine Research ( S. H. Snyder and E. Usdin, eds.), Pergamon Press, Elmsford, NY, pp. 643–648.Google Scholar
  2. Aghajanian, G. K., and Bunney, B. S., 1977, Dopamine “autoreceptors”: Pharmacological characterization by microiontophoretic single cell recording studies, Naunyn-Schmiedeberg’s Arch. Pharmacol. 297: 1–7.PubMedGoogle Scholar
  3. Andén, N-E., Roos, B. E., and Werdinius, B., 1964, Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum, Life Sci. 3: 149–158.Google Scholar
  4. Azmitia, E. C., and Segal, M., 1978, Autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, J. Comp. Neurol. 179: 641–668.PubMedGoogle Scholar
  5. Bacopoulos, N. G., 1981b, Antipsychotic drug effects on dopamine and serotonin receptors: In vitro binding and in vivo turnover studies, J. Pharmacol. Exp. Ther. 219:708–713.Google Scholar
  6. Bacopoulos, N. G., and Roth, R. H., 1981, Apomorphine-haloperidol interactions: Different types of antagonism in cortical and subcortical brain regions, Brain Res. 205: 313–319.PubMedGoogle Scholar
  7. Bacopoulos, N. G., Bustos, G., Redmond, D. E., Baulu, J., and Roth, R. H., 1978, Regional sensitivity of primate brain dopaminergic neurons to haloperidol: Alterations following chronic treatment, Brain Res. 157: 396–401.PubMedGoogle Scholar
  8. Bacopoulos, N. G., Spokes, E. G., Bird, E. D., and Roth, R. H., 1979, Antipsychotic drug action in schizophrenic patients: Effect on cortical dopamine metabolism after long- term treatment, Science 205: 1405–1407.PubMedGoogle Scholar
  9. Bacopoulos, N. G., Redmond, D. E., Baulu, J., and Roth, R. H., 1980, Chronic haloperidol or fluphenazine: Effects on dopamine metabolism in brain, cerebrospinal fluid and plasma of Cercopithecus aethiops (vervet monkey), J. Pharmacol. Exp. Ther. 212: 1–5.PubMedGoogle Scholar
  10. Balcom, G. J., Lenox, R. H., and Meyerhoff, J. L., 1975, Regional ϒ-aminobutyric acid levels in rat brain determined after microwave fixation, J. Neurochem. 24: 609–613.PubMedGoogle Scholar
  11. Bannon, M. J., and Goedert, M., 1984, Changes in substance P concentrations after protein synthesis inhibition provide an index of substance P utilization, Brain Res. 301: 184–186.PubMedGoogle Scholar
  12. Bannon, M. P., and Roth, R. H., 1983, Pharmacology of mesocortical dopamine neurons, Pharmacol. Rev. 35: 53–68.PubMedGoogle Scholar
  13. Bannon, M. J., Michaud, R. L., and Roth, R. H., 1981, Mesocortical dopamine neurons: Lack of autoreceptors modulating dopamine synthesis, Mol. Pharmacol. 19: 270–275.PubMedGoogle Scholar
  14. Bannon, M. J., Reinhard, J. F., Jr., Bunney, E. B., and Roth, R. H., 1982, Unique response to antipsychotic drugs is due to the absence of terminal autoreceptors in mesocortical dopamine neurons, Nature 296: 444–446.PubMedGoogle Scholar
  15. Baraban, J. M., and Aghajanian, G. K., 1980, Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists, Neuropharmacology 19: 355–363.PubMedGoogle Scholar
  16. Beart, P. M., and Mcdonald, D., 1980, Neurochemical studies of the mesolimbic dopaminergic pathway: Somatodendritic mechanisms and GABAergic neurones in the rat ventral tegmental area, J. Neurochem. 34: 1622–1629.PubMedGoogle Scholar
  17. Beckman, B., Hippius, H., and Ruther, E., 1979, Treatment of schizophrenia, Prog. Neuro-Psychopharmacol. 3: 47–52.Google Scholar
  18. Beninger, R. J., 1983, The role of dopamine in locomotor activity and learning, Brain Res. Rev. 6: 173–196.Google Scholar
  19. Berger, B., 1977, Histochemical identification and localization of dopaminergic axons in rat and human cerebral cortex, in: Advances in Biochemical Psychopharmacology, Vol. 16 ( E. Costa and G. L. Gessa, eds.), Raven Press, New York, pp. 13–20.Google Scholar
  20. Berger, B., Tassin, J. P., Blanc, G., Moyne, M. A., and Thierry, A. M., 1974, Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathway, Brain Res. 81: 332–337.PubMedGoogle Scholar
  21. Berger, B., Thierry, A. M., Tassin, J. P., and Moyne, M. A., 1976, Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study, Brain Res. 106: 133–145.PubMedGoogle Scholar
  22. Björklund, A., and Lindvall, O., 1985, Dopamine-containing systems in the CNS, in: Handbook of Chemical Neuronanatomy, Vol. 2, P. 1 ( A. Björklund and T. Hökfelt, eds.), Elsevier, Amsterdam, pp. 55–122.Google Scholar
  23. Bowers, M. B., Jr., and Salomonssen, L. A., 1982, LSD: Effect on monoamine metabolites in rat prefrontal cortex, Biochem. Pharmacol. 31: 4093–4096.PubMedGoogle Scholar
  24. Browder, S., German, D. C., and Shore, P. A., 1981, Midbrain dopamine neurons: Differential response to amphetamine isomers, Brain Res. 207: 333–342.PubMedGoogle Scholar
  25. Brozoski, T. J., Brown, R. M., Rosvold, H. E., and Goldman, P. S., 1979, Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey, Science 205: 929–931.PubMedGoogle Scholar
  26. Bunney, B. S., 1977, Central dopaminergic systems: Two in vivo electrophysiological models for predicting therapeutic efficacy and neurological side effects of putative antipsychotic drugs, in: Animal Models in Psychiatry and Neurology ( I. Hanin and E. Usdin, eds.), Pergamon Press, New York, pp. 91–105.Google Scholar
  27. Bunney, B. S., 1979, The electrophysiological pharmacology of midbrain dopaminergic systems, in: The Neurobiology of Dopamine ( A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, New York, pp. 417–452.Google Scholar
  28. Bunney, B.S., and Aghajanian, G.K., 1975a, Evidence for drug actions on both pre- and postsynaptic cathecholamine receptors in the CNS, in: Pre- and Postsynaptic Receptors (E. Usdin and W.E. Bunney, Jr., eds.), Dekker, New York, pp. 89–122Google Scholar
  29. Bunney, B.S., and Aghajanian, G.K., 1975b, Antipsychotic drugs and central dopaminergic neurons: A model for predicting therapeutic efficacy and incidence of extrapyramidal side effects, in: Predictability in Psychoparmacology: Preclinical and Clinical Correlations (A. Sudilovsky, S. Gershon, and B. Beer, eds.), Raven Press, New York, pp. 225–245Google Scholar
  30. Bunney, B.S., and Aghajanian, G.K., 1976, d-Amphetamine-induced inhibition of central dopaminergic neurons: Mediation by a striato-nigral feedback pathway, Science 192: 391–393PubMedGoogle Scholar
  31. Bunney, B.S., and Aghajanian, G.K., 1978, d-Amphetamine-induced depression of central dopamine neurons: Evidence for mediation by both autoreceptors and a striatal-nigral feedback pathway, Naunyn-Schmiedeberg’s Arch. Pharmacol. 304: 255–261Google Scholar
  32. Bunney, B. S., and Deriemer, S., 1982, Effects of clonidine on dopaminergic neuron activity in the substantia nigra: Possible indirect mediation by noradrenergic regulation of the serotonergic raphe system, in: Gilles de la Tourette Syndrome ( A. J. Friedhoff and T. N. Chase, eds.), Raven Press, New York, pp. 99–104.Google Scholar
  33. Bunney, B. S., and Grace, A. A., 1978, Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity, Life Sci. 23: 1715–1728.PubMedGoogle Scholar
  34. Bunney, B.S., Walters, J.R., Roth, R.H., and Aghajanian, G.K., 1973a, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185: 560–571Google Scholar
  35. Bunney, B.S., Aghajanian, G.K., and Roth, R.H., 1973b, Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons, Nature New Biol. 245: 123–125PubMedGoogle Scholar
  36. Bunney, B.S., Chiodo, L.A., Grace, A.A., and Schenk, J.O., 1985, In vivo effects of acute and chronic antipsychotic drug administration on midbrain dopaminergic neuron activity, in: Behavioral Pharmacology: The Current Status (L.S. Seiden and R.L. Balster, eds.), Liss, New York, pp. 205–220Google Scholar
  37. Carlsson, A., 1975, Dopaminergic autoreceptors, in: Chemical Tools in Catecholamine Research, Vol. II ( O. Almgren, A. Carlsson, and J. Engel, eds.), North Holland Publishing Co., Amsterdam, pp. 219–225.Google Scholar
  38. Carlsson, A., and Lindqvist, M., 1963, Effects of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20: 140–144Google Scholar
  39. Carter, C. J., and Pycock, C. J., 1980, Behavioral and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat, Brain Res. 192: 163–176.PubMedGoogle Scholar
  40. Casu, M., Klimek, V., Biggio, G., and Gessa, G. L., 1980, Tolerance to haloperidol effect on dopamine (DA) synthesis is independent from postsynaptic DA receptors, Pharmacol. Res. Commun. 12: 393–396.PubMedGoogle Scholar
  41. Cedarbaum, J. M., and Aghajanian, G. K., 1976, Noradrenergic neurons of the locus coeruleus: Inhibition by epinephrine and activation by the a-antagonist piperoxane, Brain Res. 112: 413–419.PubMedGoogle Scholar
  42. Cheramy, A., Michelot, R., Leviel, V., Nieoullon, A., Glowinski, J., and Kerdelhue, B., 1978, Effect of immunoneutralization of substance P in the cat substantia nigra on the release of dopamine from dendrites and terminals of dopaminergic neurons, Brain Res. 155: 404–408.PubMedGoogle Scholar
  43. Chiodo, L. A., 1981, Studies on the regulation of the responsiveness of substantia nigra dopamine neurons to sensory stimuli. Doctoral dissertation, University of Pittsburgh.Google Scholar
  44. Chiodo, L. A., and Bunney, B. S., 1982, Effects of chronic neuroleptic treatments on nigral dopamine cell activity, Soc. Neurosci. Abstr. 8: 482.Google Scholar
  45. Chiodo, L. A., and Bunney, B. S., 1983, Typical and atypical neuroleptics: Differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons, J. Neurosci. 3: 1607–1619.PubMedGoogle Scholar
  46. Chiodo, L. A., and Bunney, B. S., 1984, Effects of dopamine antagonists on midbrain dopamine cell activity, in: Catecholamines ( E. Usdin, A. Carlsson, A. Dahlström, and J. Engel, eds.), Pergamon Press, Elmsford, NY, pp. 369–391.Google Scholar
  47. Chiodo, L. A., Bannon, M. J., Grace, A. A., Roth, R. H., and Bunney, B. S., 1984, Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons, Neuroscience 12: 1–16.PubMedGoogle Scholar
  48. Conrad, L. C. A., and Pfaff, D. W., 1976, Autoradiographic tracing of nucleus accumbens efferents in the rat, Brain Res. 113: 589–596.PubMedGoogle Scholar
  49. Cooper, J. R., Bloom, F. E., and Roth, R. H., 1982, The Biochemical Basis of Neuropharmacology, 4th ed., Oxford University Press, New York.Google Scholar
  50. Crane, G. E., 1973, Persistent dyskinesia, Br. J. Psychiatr. 122: 395–405.Google Scholar
  51. Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62 (Suppl. 232): 1–55.Google Scholar
  52. Dalsass, M., German, D. C., Kiser, R. S., and Speciale, S., 1979, Effects of D-amphetamine on dopaminergic neurons in the ventral tegmental area of the rat, Soc. Neurosci. Abstr. 5: 553.Google Scholar
  53. Deneau, J. M., Thierry, A. M., and Feger, J., 1980, Electrophysiological identification of mesencephalic ventromedial tegmental (VTA) neurons projecting to the frontal cortex, septum and nucleus accumbens, Brain Res. 189: 315–326.Google Scholar
  54. Deutch, A. Y., 1982, Behavioral organization of the A8 dopamine cell group, Soc. Neurosci. Abstr. 8: 391.Google Scholar
  55. Deutch, A. Y., Goldstein, M., Bunney, B. S., and Roth, R. H., 1984, The anatomical organization of the efferent projections of the A8 dopamine cell group, Soc. Neurosci. Abstr. 10: 9.Google Scholar
  56. Deutch, A.Y., Maggio, J.E., Bannon, M.J., Kalivas, P.W., Tam, S-Y., Goldstein, M., and Roth, R.H., 1985a, Substance K and substance P differentially modulated mesolimbic and mesocortical system, Peptides 6 (Suppl. 2): 113–122PubMedGoogle Scholar
  57. Deutch, A.Y., Tam, S-Y., and Roth, R.H., 1985b, Footshock and conditioned stress increase 3,4-dihydroxy-phenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra, Brain Res. 333 143–146PubMedGoogle Scholar
  58. Dichiara, G., Porceddu, M.L., Fratta, W., and Gessa, G.L., 1977a, Postsynaptic receptors are not essential for dopaminergic feedback regulation, Nature 267: 270–272Google Scholar
  59. Dichiara G., Porceddu, M.L., Spano, P.F., and Gessa, G.L., 1977b, Haloperidol increases and apomorphine decrease striatal dopamine metabolism after destruction of striatal dopamine-sensitive cyclase by kainic acid, Brain Res. 130: 374–382Google Scholar
  60. Elchisak, M. A., Murrin, L. C., and Roth, R. H., 1976, Free and conjugated dihydroxyphenylacetic acid: Effect of alterations in impulse flow in rat neostriatum and frontal cortex, Commun. Psychopharmacol. 2: 411–420.Google Scholar
  61. Elliott, P. J., Alpert, J. E., Bannon, M. J., and Iversen, S. D., 1986, Selective activation of mesolimbic and mesocortical dopamine metabolism by infusion of a stable substance P analogue into the ventral tegmental area in rat brain, Brain Res. 363: 145–147.PubMedGoogle Scholar
  62. Erspamer, V., 1981, The tachykinin peptide family, Trends Neurosci. 4: 267–269.Google Scholar
  63. Fadda, F., Argolas, A., Melis, M. R., Tissari, A. H., Onali, P. R., and Gessa, G. L., 1978, Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in nucleus accumbens: Reversal by diazepam, Life Sci. 23: 2219–2224.PubMedGoogle Scholar
  64. Fadda, F., Gessa, G. L., Marcou, M., Mosca, E., and Rossetti, Z., 1984, Evidence for autoreceptors in mesocortical dopamine neurons, Brain Res. 293: 67–72.PubMedGoogle Scholar
  65. Fallon, J. H., 1981, Collateralization of monoamine neurons: Mesotelencephalic dopamine projections to caudate, septum and frontal cortex, J. Neurosci. 4: 1361–1368.Google Scholar
  66. Fonnum, F., Walaas, I., and Iversen, E., 1977, Localization of GABAergic, cholinergic and aminergic structures in the mesolimbic system, J. Neurochem. 29: 221–230.PubMedGoogle Scholar
  67. Freeman, A. S., and Bunney, B. S., 1987, Activity of A9 and A10 dopaminergic neurons in unrestrained rats: Further characterization and effects of apomorphine and cholecystokinin, Brain Res. (in press).Google Scholar
  68. Freeman, A. S., Meltzer, L. T., and Bunney, B. S., 1985, Firing properties of substantia nigra dopaminergic neurons in freely moving rats, Life Sci. 36: 1983–1994.PubMedGoogle Scholar
  69. Frigyesi, T. L., and Szabo, J., 1975, Caudate evoked synaptic activities in nigral neurons, Exp. Neurol. 49: 123–139.PubMedGoogle Scholar
  70. Fuxe, K., Hokfelt, T., Ljungdahl, A., Agnati, L., Johansson, O., and Perez De La Mora, M., 1975, Evidence for an inhibitory GABAergic control of the meso-limbic dopamine neurons: Possibility of improving treatment of schizophrenia by combined treatment with neuroleptics and GABAergic drugs, Med. Biol. 53: 177–183.PubMedGoogle Scholar
  71. Fuxe, K., Perez De La Mora, M., Hökfelt, T., Agnati, L., Ljungdahl, A., and Johansson, O., 1977, GABA-DA interactions and their possible relation to schizophrenia, in: Psychopathology and Brain Dysfunction ( C. Shagass, S. Gershon, and A. J. Friedhoff, eds.), Raven Press, New York, pp. 97–111.Google Scholar
  72. Fuxe, K., Andersson, K., Ogren, S. O., Perez De La Mora, M., Schwarcz, R., Hökfelt, T., Eneroth, P., Gustafsson, J. A., and Skett, P., 1978, GABA neurons and their interaction with monoamine neurons. An anatomical, pharmacological and functional analysis, in: GABA-Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Krueger, and H. Kofod, eds.), Munksgaard, Copenhagen, pp. 74–94.Google Scholar
  73. Galey, D., Simon, H., and Lemoal, M., 1977, Behavioral effects of lesions in the A10 dopaminergic area of the rat, Brain Res. 124: 83–97.PubMedGoogle Scholar
  74. Gallager, D. W., and Aghajanian, G. K., 1976, Effect of antipsychotic drugs on the firing of dorsal raphe cells. I. Role of adrenergic system, Eur. J. Pharmacol. 39: 341–355.PubMedGoogle Scholar
  75. Galloway, M. P., Wolf, M. E., and Roth, R. H., 1986, Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: Studies in vivo, J. Pharmacol. Exp. Ther. 236: 689–698.Google Scholar
  76. German, D.C., Dalsass, M., and Kiser, R. S., 1980, Electrophysiological examination of the ventral tegmental (A 10) area in the rat, Brain Res. 181: 191–197PubMedGoogle Scholar
  77. Glowinski, J., 1975, Effects of neuroleptics on the nigroneostriatal and mesocortical dopaminergic systems, in: Biology of Major Psychosis ( D. X. Freedman, ed.), Raven Press, New York, pp. 233–246.Google Scholar
  78. Grace, A. A., and Bunney, B. S., 1979, Paradoxical GABA excitation of nigral dopaminergic cells: Indirect mediation through reticulata inhibitory neurons, Eur. J. Pharmacol. 59: 211–218.PubMedGoogle Scholar
  79. Grace, A. A., and Bunney, B. S., 1980, Nigral dopamine neurons: Intracellular recording and identification with L-dopa injection and histofluorescence, Science 210: 654–656.PubMedGoogle Scholar
  80. Grace, A. A., and Bunney, B. S., 1983, Intracellular and extracellular electrophysiology of nigral dopaminergic neurons. I. Identification and characterization, Neuroscience 10: 301–315.PubMedGoogle Scholar
  81. Grace, A. A., and Bunney, B. S., 1986, Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: Analysis using in vivo intracellular recording, J. Pharmacol. Exp. Ther. 238: 1092–1100.PubMedGoogle Scholar
  82. Groves, P. M., Wilson, C. J., Young, S. J., and Rebec, G. V., 1975, Self-inhibition by dopamine neurons, Science 190: 522–529.PubMedGoogle Scholar
  83. Guyenet, P. G., and Aghajanian, G. K., 1978, Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra, Brain Res. 150: 69–84.PubMedGoogle Scholar
  84. Hanson, G., Alphs, L., Pradlan, S., and Lovenberg, W., 1981a, Response of striatonigral substance P systems to a dopamine receptor agonist and antagonist, Neuropharmacology 20: 541–548PubMedGoogle Scholar
  85. Hanson, G.R., Alphs, L., Wolf, W., Levine, R., and Lovenberg, W., 1981b, Haloperidol induced reduction of nigral substance P-like immunoreactivity: A probe for the interactions between dopamine and substance P neuronal systems, J. Pharmacol. Exp. Ther 218: 568–574PubMedGoogle Scholar
  86. Hattori, T., Fibiger, H. C., and Mcgeer, P. L., 1975, Demonstration of a pallidonigral projection innervating dopaminergic neurons, J. Comp. Neurol. 162: 487–504.PubMedGoogle Scholar
  87. Herman, J. P., Guilloneau, D., Dantzer, R., Scatton, B., Semerdjian-Rouquier, L., and Lemoal, M., 1982, Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat, Life Sci. 30: 2207–2214.PubMedGoogle Scholar
  88. Herve, D., Simon, H., Blanc, G., Lisoprawski, A., Lemoal, M., Kim, J., and Tassin, J. P., 1979, Increased utilization of dopamine in the nucleus accumbens but not in the central cortex after dorsal raphe lesions in the rat, Neurosci. Lett. 15: 127–133PubMedGoogle Scholar
  89. Hökfelt, T., Fuxe, K., and Goldstein, M., 1973, Immunohistorical studies on monoamine containing cell systems, Brain Res. 62: 461–469.PubMedGoogle Scholar
  90. Hökfelt, T., Fuxe, K., Johansson, O., and Ljungdahl, A., 1974, Pharmaco-histochemical evidence of the existence of DA nerve terminals in the limbic cortex, Eur. J. Pharmacol. 25: 108–112.PubMedGoogle Scholar
  91. Hökfelt, T., Agnati, L., Fuxe, K., Johansson, O., Jonsson, G., Ljungdahl, A., and Lofström, A., 1975, Possible involvement of GABA synapses in the action of neuroleptic drugs on dopamine neurons, in: Antipsychotic Drugs: Pharmacodynamics and Pharmacokinetics ( G. Sedvall, ed.), Pergamon Press, Oxford and New York, pp. 227–233.Google Scholar
  92. Hökfelt, T., Vincent, S., Hellsten, L., Rosell, S., Folkers, K., Markey, K., Goldstein, M., and Cuellu, C., 1981, Immunohistochemical evidence for a “neurotoxic” action of (D-Pro2, D-Trp7, 9)-substance P, an analogue with substance P antagonistic activity, Acta Physiol. Scand. 113: 571–573.PubMedGoogle Scholar
  93. Hong, J. S., Yang, H.-Y. T., and Costa, E., 1978, Substance P content of substantia nigra alter chronic treatment with antischizophrenic drugs, Neuropharmacology 17: 83–85.PubMedGoogle Scholar
  94. Iversen, L. L., Elliott, P. J., Bannon, M. J., Alpert, J. E., and Iversen, S. D., 1983, Interaction of substance P with dopaminergic neurones in brain, in: Substance P—Dublin 1983 (P. Skrabanek and D. Powell, eds.), Poole Press, Dublin, pp. 43–44.Google Scholar
  95. Iversen, S. D., 1982, Behavioral effects of substance P through dopaminergic pathways in the brain, in: Substance P in the Nervous System (R. Porter and M. O’Conner, eds.), Pittman, London, pp. 307–324.Google Scholar
  96. Jessell, T. M., 1983, Substance P in the nervous system, in: Handbook of Psychopharmacology, Vol. 16 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 1–105.Google Scholar
  97. Jessell, T. M., Emson, P. C., Paxinos, A., and Cuello, A. C., 1978, Topographic projections of substance P and GABA pathways in the striato- and pallido-nigral system: A biochemical and immunohistochemical study, Brain Res. 152: 487–498.PubMedGoogle Scholar
  98. Kääriäinen, I., 1976, Effects of aminooxyacetic acid and baclofen on the catalepsy and on the increase of mesolimbic and striatal dopamine turnover induced by haloperidol in rats, Acta Pharmacol. Toxicol. 39: 393–400.Google Scholar
  99. Kehr, W., 1977, Effects of lisuride and other ergot derivatives on monoaminergic mechanisms in the rat brain, Eur. J. Pharmacol. 41: 262–273.Google Scholar
  100. Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., and Atack, C. V., 1972, Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity, J. Pharm. Pharmacol. 24: 744–746.PubMedGoogle Scholar
  101. Kim, J-S., Bak, I. J., Hassler, R., and Okada, Y., 1971, Role of ϒ-aminobutyric acid in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA- rich striato-nigral neurons, Exp. Brain Res. 14: 95–104.PubMedGoogle Scholar
  102. Kimura, S., Okada, M., Sugita, Y., Kanazawa, I., and Munekata, E., 1983, Novel neuropeptides, neurokinin α and β, isolated from porcine spinal cord, Proc. Japan Acad. 59 (Ser. B): 101–104.Google Scholar
  103. Klein, D. F., Gittelman, R., Quitkin, F., and Ritkin, A., 1980, Diagnosis and Drug Treatment of Psychiatric Disorders: Adults and Children, Williams & Wilkins, Baltimore, MD.Google Scholar
  104. Koshiya, K., and Kato, T., 1983, Acute changes in nigral substance P content induced by drugs acting on dopamine, muscarine and GABA receptors, Naunyn-Schmiedeberg’s Arch. Pharmacol. 324: 223–227.PubMedGoogle Scholar
  105. Lavielle, S., Tassin, J. P., Thierry, A. M., Blanc, G., Herve, D., Bathelemy, C., and Glowinski, J., 1978, Blockade by benzodiazepines of the selective high increase in dopamine turnover induced by stress in mesocortical dopaminergic neurons of the rat, Brain Res. 168: 585–594.Google Scholar
  106. Ledouarin, C., Oblin, A., Fage, D., and Scatton, B., 1983, Influence of lithium on biochemical manifestations of striatal dopamine target cell supersensitivity induced by prolonged haloperidol treatment, Eur. J. Pharmacol. 93: 55–62.Google Scholar
  107. Lee, J.-M., Mclean, S., Maggio, J. E., Zamir, N., Roth, R. H., Eskay, R. L., and Bannon, M. J., 1986, The localization and characterization of substance P and substance K in striatonigral neurons, Brain Res. 371: 152–154.PubMedGoogle Scholar
  108. Lemoal, M., Cardo, B., and Stinus, L., 1969, Influence of ventral mesencephalic lesions on various spontaneous and conditioned behaviors in the rat, Physiol. Behav. 4: 567–573.Google Scholar
  109. Lenard, L., and Nauta, W. J. H., 1979, Neostriatal and limbic projections of cell group A8, Neurosci. Lett, suppl. 3: S70.Google Scholar
  110. Lindvall, O., 1979, Dopamine pathways in the rat brain, in: The Neurobiology of Dopamine ( A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, New York, pp. 319–342.Google Scholar
  111. Lindvall, O., Björklund, A., and Divac, I., 1977, Organization of mesencephalic dopamine neurons projecting to the neocortex and septum, in: Advances in Biochemical Psychopharmacology, Vol. 16 ( E. Costa and G. L. Gessa, eds.), Raven Press, New York, pp. 39–46.Google Scholar
  112. Lindvall, O., Björklund, A., and Divac, I., 1978, Organization of catecholamine neurons projecting to the frontal cortex in the rat, Brain Res. 142: 1–24.PubMedGoogle Scholar
  113. Lisoprawski, A., Herve, D., Blanc, G., Glowinski, J., and Tassin, J. P., 1980, Selective activation of the mesocortical frontal dopaminergic neurons induced by lesion of the habenula in the rat, Brain Res. 183: 229–234.PubMedGoogle Scholar
  114. Loughlin, S.E., and Fallon, J. H., 1984, Substantia nigra and ventral tegmental area projections to cortex: Topography and collateralization, Neuroscience 11: 425–435.PubMedGoogle Scholar
  115. Macneil, D., Gower, M., and Szymanska, I., 1978, Response of dopamine neurons in substantia nigra to muscimol, Brain Res. 154: 401–403.PubMedGoogle Scholar
  116. Maggio, J. E., Sandberg, B. E. B., Bradley, C. V., Iversen, L. L., Santikaru, S., Williams, D. H., Hunter, J. C., and Hanley, M. R., 1983, Substance K: A novel tachykinin in mammalian spinal cord, in: Substance P—Dublin 1983 ( P. Skrabenak and D. Powell, eds.), Poole Press, Dublin, pp. 20–21.Google Scholar
  117. Mantyh, P. W., Maggio, J. E., and Hunt, S. P., 1984, The autoradiographic distribution of kassinin and substance K binding sites is different from the distribution of substance P binding sites in rat brain, Eur. J. Pharmacol. 102: 361–364.PubMedGoogle Scholar
  118. Matthysse, S., 1973, Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed. Proc. 32: 200–205.PubMedGoogle Scholar
  119. Mcgeer, E. G., Parkinson, J., and Mcgeer, P. L., 1976, Neonatal enzyme development in the interpeduncular nucleus and surrounding ventral tegmentum, Exp. Neurol. 53: 109–114.PubMedGoogle Scholar
  120. Mcgeer, P. L., Mcgeer, E. G., and Haitori, T., 1977, Dopamine-acetylcholine-GABA neuronal linkages in the extrapyramidal and limbic systems, in: Advances in Biochemical Psychopharmacology, Vol. 16 ( E. Costa and G. L. Gessa, eds.), Raven Press, New York, pp. 397–402.Google Scholar
  121. Mcnair, J. L., Sutin, J., and Tsubokawa, T., 1972, Suppression of cell firing in the substantia nigra by caudate nucleus stimulation, Exp. Neurol. 37: 395–411.PubMedGoogle Scholar
  122. Melis, M. R., and Gale, K., 1984, Evidence that nigral substance P controls the activity of the nigrotectal GABAergic pathway, Brain Res. 295: 389–393.Google Scholar
  123. Meltzer, H. Y., 1980, Relevance of dopamine autoreceptors for psychiatry: Preclinical and clinical studies, Schizophrenia Bull. 6: 456–475.Google Scholar
  124. Meltzer, H. Y., and Stahl, S. M., 1976, The dopamine hypothesis of schizophrenia: A review, Schizophrenia Bull. 2: 19–76.Google Scholar
  125. Michelot, R., Leviel, V., Giorgiueff-Chesselet, M. F., Cheramy, A., and Glowinski, J., 1979, Effects of the unilateral nigral modulation of substance P transmission on the activity of the two nigrostriatal dopaminergic pathways, Life Sci. 24: 715–724.PubMedGoogle Scholar
  126. Miller, J. D., Farber, J., Gotz, P., Roffwarg, H., and German, D. C., 1983, Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat, Brain Res. 273: 133–141.PubMedGoogle Scholar
  127. Moore, K. E., and Kelly, P. H., 1978, Biochemical pharmacology of mesolimbic and mesocortical dopaminergic neurons, in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), Raven Press, New York, pp. 221–234.Google Scholar
  128. Moore, R. Y., Halaris, A. E., and Jones, B., 1978, Serotonin neurons of the midbrain raphe: Ascending projections, J. Comp. Neurol. 180: 417–438.PubMedGoogle Scholar
  129. Nagai, T., Mcgeer, P. L., and Mcgeer, E. G., 1983, Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain, J. Comp. Neurol. 218: 220–238PubMedGoogle Scholar
  130. Nauta, W.J. H., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neuroscience 3: 385–401.PubMedGoogle Scholar
  131. Nawa, H., Hirose, T., Takashima, H., Inayama, S., and Nakanishi, S., 1983, Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor, Nature 306: 32–36PubMedGoogle Scholar
  132. Nawa, H., Kotani, H., and Nokanishi, S., 1984, Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternate RNA splicing, Nature 312: 729–734PubMedGoogle Scholar
  133. Nowycky, M. C., and Roth, R. H., 1978, Dopaminergic neurons: Role of presynaptic receptors in the regulation of transmitter biosynthesis, Prog. Neuro-Psychopharmacol. 2: 139–158.Google Scholar
  134. Nowycky, M. C., Walters, J. R., and Roth, R. H., 1978, Dopaminergic neurons: Effect of acute and chronic morphine administration on single cell activity and transmitter metabolism, J. Neural Transmission 42: 99–116.Google Scholar
  135. Nyback, H., Borzecki, A., and Sedvall, G., 1968, Accumulation and disappearance of catecholamines formed from tyrosine-C14 in mouse brain: Effect of some psychiatric drugs, Eur. J. Pharmacol. 4: 395–403.PubMedGoogle Scholar
  136. Oblin, A., Zivkovic, B., and Bartholini, G., 1984, Involvement of the D-2 receptor in the neuroleptic-induced decrease in nigral substance P, Eur. J. Pharmacol. 105: 175–177.PubMedGoogle Scholar
  137. Oertel, W. H., Tappaz, M. L., Berod, A., and Mugnaini, E., 1982, Two-color immunohistochemistry for dopamine and GABA neurons in rat substantia nigra and zona incerta, Brain Res. Bull. 9: 463–474.PubMedGoogle Scholar
  138. Olpe, H-R., Koella, W. P., Wolf, P., and Haas, H. L., 1977, The action of Baclofen on neurons of the substantia nigra and of the ventral tegmental area, Brain Res. 134: 577–580.PubMedGoogle Scholar
  139. Palfreyman, M. G., Huot, S., Lippert, B., and Schechter, P. J., 1978, The effect of ϒ-acetylenic GABA, an enzyme-activated irreversible inhibitor of GABA-transaminase, on dopamine pathways of the extrapyramidal and limbic systems, Eur. J. Pharmacol. 50: 325–336.PubMedGoogle Scholar
  140. Phillipson, O. T., 1979, Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat, J. Comp. Neurol. 187: 117–144.PubMedGoogle Scholar
  141. Pieri, L., Keller, H. H., Burkard, W., and Daprada, M., 1978, Effects of lisuride and LSD on cerebral monoamine systems and hallucinosis, Nature 252: 586–588.Google Scholar
  142. Pinnock, R. D., and Dray, A., 1982, Differential sensitivity of presumed dopaminergic and non-dopaminergic neurones in rat substantia nigra to electrophoretically applied substance P, Neurosci. Lett. 29: 153–158.PubMedGoogle Scholar
  143. Pinnock, R. D., Woodruff, G. N., and Turnbull, M. J., 1983, Actions of substance P, MIF, TRH and related peptides in the substantia nigra, caudate nucleus and nucleus accumbens, Neuropharmacology 22: 687–696.PubMedGoogle Scholar
  144. Precht, W., and Yoshida, M., 1971, Blockade of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin, Brain Res. 32: 229–233.PubMedGoogle Scholar
  145. Pycock, C. J., Horton, R. W., and Carter, C. J., 1978, Interactions of 5-hydroxytrypta- mine and ϒ-aminobutyric acid with dopamine, in: Advances in Biochemical Psychopharmacology, Vol. 19 ( P.J. Roberts, G. N. Woodruff, and L. L. Iversen, eds.), Raven Press, New York, pp. 323–341.Google Scholar
  146. Pycock, C. J., Kerwin, R. W., and Carter, C. J., 1980, Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats, Nature 286: 74–77.PubMedGoogle Scholar
  147. Quirion, R., Shults, C. W., Moody, T. W., Pert, C. B., Chase, T. N., and O’Donohue, T. L., 1983, Autoradiographic distribution of substance P receptors in rat central nervous system, Nature 303: 714–716.PubMedGoogle Scholar
  148. Rebec, G. V., and Groves, P. M., 1975, Apparent feedback from caudate nucleus to the substantia nigra following amphetamine administration, Neuropharmacology 14: 275–282.PubMedGoogle Scholar
  149. Reinhard, J. F., Jr., Bannon, M. J., and Roth, R. H., 1982, Acceleration by stress of dopamine synthesis and metabolism in prefrontal cortex: Antagonism by diazepam, Naunyn-Schmiedeberg’s Arch. Pharmacol. 318: 374–377.PubMedGoogle Scholar
  150. Rosenfeld, M., and Makman, M. H., 1981, The interaction of lisuride, an ergot derivative, with serotonergic and dopaminergic receptors in rabbit brain, J. Pharmacol. Exp. Ther. 216: 526–531.PubMedGoogle Scholar
  151. Roth, R. H., 1979, Dopamine autoreceptors: Pharmacology, function and comparison with postsynaptic dopamine receptors, Commun. Psychopharmacol. 3: 429–445.PubMedGoogle Scholar
  152. Roth, R. H., 1984, Dopamine autoreceptors: Distribution, pharmacology and function, Ann. NY Acad. Sci. 689: 27–53.Google Scholar
  153. Roth, R. H., Morgenroth, V. H., and Murrin, L. C., 1975, The effects of antipsychotic drugs and impulse flow on the kinetics of striatal tyrosine hydroxylase, in: Antipsychotic Drugs: Pharmacodynamics and Pharmacokinetics ( G. Sedvall, ed.), Pergamon Press, Elmsford, NY, pp. 133–145.Google Scholar
  154. Roth, R. H., Bacopoulos, N. G., Bustos, G., and Redmond, D. E., Jr., 1980, Antipsychotic drugs: Differential effects on dopamine neurons in basal ganglia and mesocortex following chronic administration in human and nonhuman primates, in: Advances in Biochemical Psychopharmacology, Vol. 24 ( F. Cattabeni, G. Racagni, P. F. Spano, and E. Costa, eds.), Raven Press, New York, pp. 513–520.Google Scholar
  155. Roth, R. H., Galloway, M. P., Tam, S.-Y., Ono, N., and Wolf, M. E., 1986, Dopamine autoreceptors: Studies on their distribution and mode of action, in: Dopaminergic Systems and Their Regulation ( G. N. Woodruff, J. A. Poat, and P. J. Roberts, eds.), Macmillan Press, London, pp. 45–61.Google Scholar
  156. Salt, T. E., Devries, G. J., Rodriguez, R. E., Cahusac, P. M. B., Morris, R., and Hill, R. G., 1982, Evaluation of (D-Pro2, D-Trp7,9)-substance P as an antagonist of substance P responses in the central nervous system, Neurosci. Lett. 30: 291–295.PubMedGoogle Scholar
  157. Scatton, B., 1977, Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration, Eur. J. Pharmacol. 46: 363–369PubMedGoogle Scholar
  158. Scatton, B., Glowinski, J., and Julou, L., 1976, Dopamine metabolism in the mesolimbic and mesocortical dopaminergic systems after single or repeated administrations of neuroleptics, Brain Res. 109: 184–189.PubMedGoogle Scholar
  159. Scatton, B., Boireau, A., Garret, C., Glowinski, J., and Julou, L., 1977, Action of the palmitic ester of pipotiazine on dopamine metabolism in the nigro-striatal, meso-limbic and meso-cortical systems, Naunyn-Schmiedeberg’s Arch. Pharmacol. 296: 169–175.PubMedGoogle Scholar
  160. Scatton, B., Zivkovic, B., and Bartholini, G., 1980a, Differential influence of GABA-ergic agents on dopamine metabolism in extrapyramidal and limbic systems of the rat, Brain Res. Bull. 5 (suppl. 2): 421–425Google Scholar
  161. Scatton, B., Zivkovic, B., and Dedek, J., 1980b, Antidopaminergic properties of yohimbine, J. Pharmacol. Exp. Ther. 215: 494–499PubMedGoogle Scholar
  162. Scatton, B., Dedek, J., and Zivkovic, B., 1983, Lack of involvement of α-adrenoceptors in the regulation of striatal dopaminergic transmission, Eur. J. Pharmacol. 86: 427–433.PubMedGoogle Scholar
  163. Sedvall, G., Receptor feedback and dopamine turnover in CNS, in: Handbook of Psychopharmacology, Vol. 6 (L.L. Iversen, S.D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 127–177Google Scholar
  164. Shepard, P., and German, D. C., 1984, A subpopulation of mesocortical dopamine neurons possesses autoreceptors, Eur. J. Pharmacol. 98: 455–456.PubMedGoogle Scholar
  165. Silbergeld, E. K., and Hruska, R. E., 1979, Lisuride and LSD: dopaminergic and serotonergic interactions in the “serotonergic syndrome,” Psychopharmacology 65: 233–237.PubMedGoogle Scholar
  166. Simon, H., Lemoal, M., and Calas, A., 1979, Efferents and afferents of the ventral tegmental A10 region after local injection of 3H-leucine and horseradish peroxidase, Brain Res. 178: 17–40PubMedGoogle Scholar
  167. Simon, H., Scatton, B., and Lemoal, M., 1980, Dopaminergic A10 neurones are involved in cognitive functions, Nature 286: 150–151.PubMedGoogle Scholar
  168. Skirboll, L. R., Grace, A. A., and Bunney, B. S., 1979, Dopamine auto- and postsynaptic receptors: Electrophysiological evidence for differential sensitivity to dopamine agonists, Science 206: 80–82.PubMedGoogle Scholar
  169. Snyder, S. H., 1972, Catecholamines in the brain as mediators of amphetamine psychosis, Arch. Gen. Psychiatry 27: 169–179.PubMedGoogle Scholar
  170. Snyder, S. H., Bannerjee, S. P., Yamamura, H. I., and Greenberg, D., 1974, Drugs, neurotransmitters and schizophrenia, Science 184: 1243–1253.PubMedGoogle Scholar
  171. Steinfels, G. F., Heym, J., and Jacobs, B. L., 1981, Single unit activity of dopaminergic neurons in freely moving cats, Life Sci. 29: 1435–1442.PubMedGoogle Scholar
  172. Stevens, J.R., 1973, An anatomy of schizophrenia? Arch. Gen. Psychiatr. 29: 177–189.PubMedGoogle Scholar
  173. Svensson, T., Bunney, B. S., and Aghajanian, G. K., 1975, Inhibition of both noradrenergic and serotonergic neurons in brain by the a-adrenergic agonist clonidine, Brain Res. 92: 291–306.PubMedGoogle Scholar
  174. Swanson, L. W., 1982, The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat, Brain Res. Bull. 9: 321–353.PubMedGoogle Scholar
  175. Tam, S.-Y., and Roth, R. H., 1985, Selective increase in dopamine metabolism in the prefrontal cortex by the anxiogenic beta-carboline FG 7142, Biochem. Pharmacol. 34: 1595–1598.PubMedGoogle Scholar
  176. Tam, S.-Y., Bannon, M. J., and Roth, R. H., 1983, Apomorphine selectively reverses the impulse induced increase in dopamine synthesis in mesocortical dopamine neurons with autoreceptors, Soc. Neurosci. Abstr. 9: 1004.Google Scholar
  177. Tassin, J. P., Stinus, L., Simon, H., Blanc, G., Thierry, A. M., Lemoal, M., Cardo, B., and Glowinski, J., 1978, Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto-cortical dopaminergic innervation in the rat, Brain Res. 141: 267–281.PubMedGoogle Scholar
  178. Thierry, A. M., Tassin, J. P., Blanc, G., and Glowinski, J., 1978, Studies on mesocortical dopamine systems, in: Advances in Biochemical Psychopharmacology, Vol. 19 ( P. J. Roberts, G. N. Woodruff, and L. L. Iversen, eds.), Raven Press, New York, pp. 205–216.Google Scholar
  179. Trulson, M. E., and Preussler, D. W., 1984, Dopamine-containing ventral tegmental area neurons in freely moving cats: Activity during the sleep-waking cycle and effects of stress, Exp. Neurol. 83: 367–377.PubMedGoogle Scholar
  180. Trulson, M. E., Preussler, D. W., and Howell, G. A., 1981, Activity of substantia nigra units across the sleep-waking cycle in freely moving cats, Neurosci. Lett. 26: 183–188.PubMedGoogle Scholar
  181. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. Suppl. 367: 1–48.PubMedGoogle Scholar
  182. Von Hungen, K., and Roberts, S., 1973, Adenylate cyclase receptors for adrenergic neurotransmitters in rat cerebral cortex, Eur. J. Biochem. 36: 391–401.Google Scholar
  183. Waddington, J. L., and Cross, A. J., 1978, Neurochemical changes following kainic acid lesions of the nucleus accumbens: Implications for a GABA-ergic accumbal-ventral tegmental pathway, Life Sci. 22: 1011–1014.PubMedGoogle Scholar
  184. Walass, I., and Fonnum, F., 1980, Biochemical evidence for ϒ-aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat, Neuroscience 5: 63–72.Google Scholar
  185. Waldmeier, P. C., 1980, Serotonergic modulation of mesolimbic and frontal cortical dopamine neurons, Experentia 36: 1092–1094.Google Scholar
  186. Walters, J. R., and Lakoski, J. M., 1978, Effect of muscimol on single unit activity of substantia nigra dopamine neurons, Eur. J. Pharmacol. 47: 469–471.PubMedGoogle Scholar
  187. Walters, J. R., and Roth, R. H., 1976, Dopaminergic neurons: An in vivo system for measuring drug interactions with presynaptic receptors, Naunyn-Schmiedeberg’s Arch. Pharmacol. 296: 5–14.PubMedGoogle Scholar
  188. Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Similar biochemical and histochemical effects of ϒ-hydroxybutyrate and acute lesions of the nigro-neostriatal pathway, J. Pharmacol. Exp. Ther. 186: 630–639.PubMedGoogle Scholar
  189. Walters, J. R., Baring, M. D., and Lakoski, J. M., 1979, Effects of ergolines on dopaminergic and serotonergic single unit activity, in: Dopaminergic Ergot Derivatives and Motor Function ( K. Fuxe and D. B. Calne, eds.), Pergamon Press, Elmsford, NY, pp. 207–221.Google Scholar
  190. Wang, R. Y., White, F. J., and Voigt, M. M., 1984, Effects of dopamine agonists on midbrain dopamine cell activity, in: Catecholamines ( E. Usdin, A. Carlsson, A. Dahlström, and J. Engel, eds.), Pergamon Press, Elmsford, NY, pp. 359–367.Google Scholar
  191. Waszczak, E. L., and Walters, J. R., 1980, Intravenous GABA agonist administration stimulates firing of A10 dopaminergic neurons, Eur. J. Pharmacol. 66: 141–144.PubMedGoogle Scholar
  192. Waszczak, B. L., Eng, N., and Walters, J. R., 1980, Effects of muscimol and picrotoxin on single unit activity of substantia nigra neurons, Brain Res. 188: 185–197.PubMedGoogle Scholar
  193. Westerink, B. H. C., and Korf, J., 1976, Acidic dopamine metabolites in cortical areas of the rat brain: Localization and effects of drugs, Brain Res. 13: 429–434.Google Scholar
  194. Wheeler, S. C., and Roth, R. H., 1980, Tolerance to fluphenazine and supersensitivity to apomorphine in central dopaminergic systems after chronic fluphenazine treatment, Naunyn-Schmiedeberg’s Arch. Pharmacol. 312: 151–159.PubMedGoogle Scholar
  195. White, F.J., and Wang, R.Y., 1983a, Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat, Life Sci. 32: 983–993PubMedGoogle Scholar
  196. White, F.J., and Wang, R.Y., 1983b, Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons, Science 221: 1054–1057PubMedGoogle Scholar
  197. White, F.J., and Wang, R.Y., 1983c, Comparison of LSD and lisuride on A10 dopamine neurons in the rat, Neuropharmacology 22: 669–676PubMedGoogle Scholar
  198. White, F.J., and Wang, R.Y., 1984a, Pharmacological characterization of dopamine autoreceptors in rat ventral tegmental area: Microiontophorectic studies, J. Pharmacol. Exp. Ther. 231: 275–280PubMedGoogle Scholar
  199. White, F.J., and Wang, R.Y., 1984b, A10 dopamine neurons: role of autoreceptors in determining firing rate and sensitivity to dopamine agonists, Life Sci. 34: 1161–1170PubMedGoogle Scholar
  200. Wolf, M. E., and Roth, R. H., 1987, Dopamine neurons projecting to the medial prefrontal cortex possess release-modulating autoreceptors, Neuropharmacology (in press).Google Scholar
  201. Wolf, P., Olpe, H-R., Avrith, D., and Haas, H. L., 1978, GABAergic inhibition of neurons in the ventral tegmental area, Experientia 34: 73–74.PubMedGoogle Scholar
  202. Yim, C.Y., and Mogenson, G.J., 1980a, Electrophysiological studies of neurons in the ventral tegmental area of Tsai, Brain Res. 181: 301–313PubMedGoogle Scholar
  203. Yim, C.Y., and Mogenson, G.J., 1980b, Effect of picrotoxin and nipecotic acid on inhibitory response of dopaminergic neurons in the ventral tegmental area to stimulation of the nucleus accumbens,Brain Res. 199: 466–472PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Michael J. Bannon
    • 1
    • 2
    • 3
  • Arthur S. Freeman
    • 1
    • 2
    • 3
  • Louis A. Chiodo
    • 1
    • 2
    • 3
  • Benjamin S. Bunney
    • 1
    • 2
  • Robert H. Roth
    • 1
    • 2
  1. 1.Departments of Psychiatry and PharmacologyYale University School of MedicineNew HavenUSA
  2. 2.Abraham Ribicoff Research FacilitiesConnecticut Mental Health CenterNew HavenUSA
  3. 3.Center for Cell BiologySinai Hospital of DetroitDetroitUSA

Personalised recommendations