Skip to main content

Ultrasonic Tissue Characterization

  • Chapter
Ultrasound

Abstract

For more than two decades, diagnostic ultrasound has been used as a non-ionizing means for imaging soft tissues and organs within the body1. Ultrasonic images, however, have not proved useful in unambiguously determining tissue pathology. Since the early 1970’s, though, it has been recognized that normal tissues exhibit significantly different acoustic properties than ischemic, infarcted, structurally disorganized or other abnormal tissues2,3. As a result, the quantitative measurement of the acoustic properties of tissue has become a popular and important area of research.

This work was supported partially by the U.S.P.H.S. through grant NCI-CA31303 and by the Fannie and John Hertz Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. B. Devey and P. N. T. Wells, Ultrasound in medical diagnosis, Sci. Amer. 238, No. 5, 98 (1978).

    Google Scholar 

  2. P. P. Lele and J. Namery, Detection of myocardial infarction by ultrasound, in: Proc. of the 25th Annual Conf. on Engng. in Med. and Biol. 14: 135 (1972).

    Google Scholar 

  3. N. Senapati, P. P. Lele and A. Woodin, A study of the scattering of submillimeter ultrasound from tissues and organs, in: 1972 I.E.E.E. Ultrasonics Symposium Proc., 72 CHO 708-8 SU,446 (1972).

    Google Scholar 

  4. S. A. Goss, R. L. Johnston, and F. Dunn, Comprehensive compilation of empirical ultrasonic properties of mammalian tissues, J. Acous. Soc. Amer. 64 ,No. 2, 423 (1978).

    Article  CAS  Google Scholar 

  5. P. N. T. Wells, “Biomedical Ultrasonics”, Academic Press, London/ New York (1977).

    Google Scholar 

  6. P. P. Lele and J. Namery, A computer-based ultrasonic system for the detection and mapping of myocardial infarcts, _in: Proc. of the San Diego Biomedical Symposium 13: 121 (1974).

    Google Scholar 

  7. J. P. Jones, Current problems in ultrasonic impediography, in: Proc. of 1st Conf. on Ultras. Tiss. Char., NBS Spec. Pub.No. 453, 253 (1975).

    Google Scholar 

  8. J. F. Greenleaf, S. A. Johnson and A. H. Lent, Measurement of spatial distribution of refractive index in tissues of ultrasonic computer assisted tomography, Ultrasound in Med. &Biol. 3: 327 (1978).

    Article  CAS  Google Scholar 

  9. C F. Schueler, H. Lee and G. Wade, Fundamentals of digital ultrasonic imaging, IEEE Trans. Son. and Ultrason., SU-31, No.4, 195 (1984).

    Google Scholar 

  10. J. C. Gore and S. Leeman, Ultrasonic backscattering from human tissue: a realistic model, Phys. Med. Biol. 22: No. 2, 317 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. P. P. Lele and N. Senapati, The frequency spectra of energy backscattered and attenuated by normal and abnormal tissue, in: Recent Advances in Ultrasound in Biomedicine 1: 55, D.N. White ed., Research Studies Press, Forest Grove, Oregon (1977).

    Google Scholar 

  12. R. Kuc, Processing of diagnostic ultrasound signals, IEEE ASSP Magazine 1: No. 1, 19 (1984).

    Article  Google Scholar 

  13. G. E. Sleefe and P. P. Lele, A non-invasive tissue characterization technique for use in hyperthermia studies, in: Hyperthermic Oncology 1984 1: 851, J. Overgaard, ed., Taylor &Francis, London and Philadelphia (1984).

    Google Scholar 

  14. R. Kuc and M. Schwartz, Estimating the acoustic attenuation coefficient slope for liver from reflected ultrasound signals, IEEE Trans. Sonics and Ultrason. SU-26: 353 (1979).

    Google Scholar 

  15. L. Hutchins and S. Leeman, Attenuation estimation by spectral smoothing, in: Ultrasonics International 1983, Z. Novak, ed., Guildford, England: IPC Science and Technology Press (1983).

    Google Scholar 

  16. L. Hutchins and S. Leeman, Pulse and impulse response in human tissues, in: Acoustical Imaging 12: 459, E. A. Ash and C. R. Hill, eds., Plenum Press, N.Y. (1982).

    Google Scholar 

  17. M. Fink, F. Hottier and J. F. Cardoso, Ultrasound signal processing for in vivo attenuation measurement: short time fourier analysis, in: Ultrasonic Imaging 5: 117 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. S. Leeman, L. Ferrari, J. P. Jones and M. Fink, Perspectives on attenuation estimation from pulse-echo signals, IEEE Trans. Sonics Ultras on. SU-31: 352 (1984).

    Google Scholar 

  19. S. M. Kay and S. L. Marple, Spectrum analysis - a modern perspective, Proc. IEEE 69: No. 11, 1380 (1981).

    Article  Google Scholar 

  20. M. Fink and F. Hottier, Short time fourier analysis and diffraction effect in biological tissue characterization, in: Acoustical Imaging 12: 493, E. A. Ash and C. R. Hill, eds., Plenum Press, N.Y. (1982).

    Google Scholar 

  21. P. W. Marcus and E. L. Cartensen, Problems with absorption measurements of inhomogeneous solids, J. Acoust. Soc. Amer. 58: 1334 (1976).

    Article  Google Scholar 

  22. Program and abstracts for the Ninth Inter. Symp. Ultrasonic Imaging and Tissue Charact., June 3–6 1984 in: Ultrasonic Imaging 6: 201 (1984).

    Google Scholar 

  23. R. C. Waag, A review of tissue characterization from ultrasonic scattering, IEEE Trans. Biom. Engng. BME-31: No. 12, 884 (1984).

    Article  Google Scholar 

  24. D. Nicholas, Orientation and frequency dependence of backscattered energy and its clinical application, in: Recent Advances in Ultrasound in Biomedicine 1, D. N. White, ed., Research Studies Press, Forest Grove, Oregon (1977).

    Google Scholar 

  25. L. L. Fellingham and F. G. Sommer, Ultrasonic characterization of tissue structure in the in vivo human liver and spleen, IEEE Trans. Sonics and Ultrason. SU-31: 4l8 (1984).

    Google Scholar 

  26. F. Lizzi, N. Feleppa and N. Jaremko, Liver-tissue characterization by digital spectrum and cepstrum analysis, Proc. 1981 Ultras. Symp. 575 (1981).

    Google Scholar 

  27. N. Ichida, T. Sato and M. Linzer, Imaging the non-linear ultrasonic parameter, Ultrasonic Imaging 5: 295 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. R. T. Beyer, Parameter of non-linearity in fluids, J. Acoust. Soc. Amer. 32: 719 (1960).

    Article  Google Scholar 

  29. W. K. Law, L. A. Frizzell, F. Dunn, Determination of the nonlinearity parameter B/A of biological media, Ultras. Med. Biol. 11: No. 2, 307 (1985).

    Article  Google Scholar 

  30. T. Sato, A. Fukusima, N. Ichida, H. Ishikawa, H. M. Wa, Y. Igarashi, T. Shimura, and K. Murakami, Non-linear parameter tomography system using counterpropagating probe and pump waves, Ultras. Imaging 7: 49 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lele, P.P., Sleefe, G.E. (1987). Ultrasonic Tissue Characterization. In: Repacholi, M.H., Grandolfo, M., Rindi, A. (eds) Ultrasound. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1811-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1811-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9013-1

  • Online ISBN: 978-1-4613-1811-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics