Characterization of Polyurethanes for Blood-Contacting Applications

  • Stuart L. Cooper
  • Michael D. Lelah
  • Timothy G. Grasel
Part of the Polymer Science and Technology book series (POLS, volume 34)

Abstract

Segmented polyurethanes are widely used in commercial and experimental blood-contacting applications which include vascular prostheses, blood filters, catheters, insulation for pacemaker leads, heart valves, cardiac assist devices, and chambers for artificial hearts. The use of this family of polymers for such applications is due to the physiological acceptability, relatively good blood tolerability, relative stability over extended implant periods, and excellent physical and mechanical properties that are exhibited by these materials1.

Keywords

Catheter Polyethylene MeOH Polyurethane Fibrinogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Lelah and S. L. Cooper, “Polyurethanes in Medicine,”CRC Press, Boca Raton, FL (1985).Google Scholar
  2. 2.
    G. J. Picha, D. F. Gibbons, and R. A. Auerbach, Effect of Poly-urethane Morphology on Blood Coagulation, J. Bioeng., 2:301 (1978).Google Scholar
  3. 3.
    T. Okano, S. Nishiyama, I. Shinohara, T. Akaike, Y. Sakurai, K. Kataoka, and T. Tsuruta, Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets, J. Biomed. Mater. Res., 15:393 (1981).CrossRefGoogle Scholar
  4. 4.
    A. Takahara, J. Tashita, T. Kajiyama, and M. Takayanagi, Blood compatibility and microphase-separated structure of segmented poly(urethaneureas) with various soft segment components, Rep. Prog. Polym. Phys. Jpn., 25:841 (1982).Google Scholar
  5. 5.
    M. D. Lelah, J. A. Pierce, L. K. Lambrecht, and S. L. Cooper, Polyether-urethane ionomers: surface property/ex vivo blood compatibility relationships, J. Colloid Interface Sci., 104:422 (1985).CrossRefGoogle Scholar
  6. 6.
    M. Jozefowicz and J. Jozefonvicz, Antithrombogenic polymers, Pure Appl. Chem., 56:1335 (1984).CrossRefGoogle Scholar
  7. 7.
    L. C. Sederel, L. van der Does, J. F. van Duijl, T. Beugeling, and A. Bantjes, Anticoagulant activity of a synthetic heparinoid in relation to molecular weight and N-sulfate content, J. Biomed. Mater. Res., 15:819 (1981).CrossRefGoogle Scholar
  8. 8.
    J. V. Ihlenfeld, T. R. Mathis, L. M. Riddle, and S. L. Cooper, Measurement of transient thrombus deposition on polymeric materials, Thromb. Res., 14:953 (1979).CrossRefGoogle Scholar
  9. 9.
    M. D. Lelah, L. K. Lambrecht, and S. L. Cooper, A canine ex vivo series shunt for evaluating thrombus deposition on polymer surfaces, J. Biomed. Mater. Res., 18:475 (1984).CrossRefGoogle Scholar
  10. 10.
    M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physicochemical characterization and in vivo blood tolerability of cast and extruded Biomer, J. Biomed. Mater. Res., 17:1 (1983).CrossRefGoogle Scholar
  11. 11.
    K. K. S. Hwang, C. Z. Yang, and S. L. Cooper, Properties of poly-ether-polyurethane zwitterionomers, Polym. Eng. Sci., 21:1027 (1981).CrossRefGoogle Scholar
  12. 12.
    C. Z. Yang, K. K. S. Hwang, and S. L. Cooper, Morphology and properties of polybutadiene-and polyether-polyurethane zwitterionomers, Makromol. Chem., 184:651 (1983).CrossRefGoogle Scholar
  13. 13.
    J. A. Miller, K. K. S. Hwang, and S. L. Cooper, Properties of polyether-polyurethane anionomers, J. Macromol. Sci. Phys., B22:321 (1983).Google Scholar
  14. 14.
    W. C. Hamilton, A technique for the characterization of hydrophilic solid surfaces, J. Colloid Interface Sci., 40:219 (1972).CrossRefGoogle Scholar
  15. 15.
    J. D. Andrade, S. M. Ma, R. N. King, and D. E. Gregonis, Contact angles at the solid-water interface, J. Colloid Interface Sci., 72:488 (1979).CrossRefGoogle Scholar
  16. 16.
    M. D. Lelah, T. G. Grasel, J. A. Pierce, and S. L. Cooper, Ex vivo interactions and surface property relationships of polyether-urethanes, J. Biomed. Mater. Res., submitted for publication (1985).Google Scholar
  17. 17.
    M. D. Lelah, Ph.D. Dissertation, University of Wisconsin-Madison (1984).Google Scholar
  18. 18.
    V. sa da Costa, D. Brier-Russell, E. W. Salzman, and E. W. Merrill, ESCA studies of polyurethanes: blood platelet activation in relation to surface composition, J. Colloid Interface Sci., 80:445 (1981).CrossRefGoogle Scholar
  19. 19.
    E. W. Merrill, V. sa da Costa, E. W. Salzman, D. Brier-Russell, L. Kuchner, D. F. Waugh, G. Trudel, S. Stopper, and V. Vitale, A critical study of segmented polyurethanes, in: “Biomaterials: Interfacial Phenomena and Applications,”S. L. Cooper and N. A. Peppas, eds., Adv. Chem. Ser. 199:95 (1982).CrossRefGoogle Scholar
  20. 20.
    R. S. Wilson, M. D. Lelah, and S. L. Cooper, Blood-material interactions: Assessment of in vitro and in vivo test methods, in: “Techniques in Biocompatibility Testing,”D. F. Williams, ed., CRC Press, Boca Raton, FL (1985).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Stuart L. Cooper
    • 1
  • Michael D. Lelah
    • 1
  • Timothy G. Grasel
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations