Advertisement

Nylon Reactors

  • Santosh K. Gupta
  • Anil Kumar
Part of the The Plenum Chemical Engineering Series book series (PCES)

Abstract

Nylons are polymers having amide
linkages, because of which they are also called polyamides. Since proteins are polyamides of various amino acids, they, too, fall into this category, but the discussion in this chapter is limited to industrially important synthetic polyamides. There are two classes of synthetic nylons. One of these is formed from cyclic monomers (or amino acids), as for example, nylon 6 {H Open image in new window HN-(CH2)5-CO Open image in new window n -OH}, which has six carbon atoms per repeat unit and is made from -caprolactam, nylon 12 {H Open image in new window NH-(CH2 Open image in new window 11-CO Open image in new window n -OH}, having 12 carbon atoms in the repeat unit, and made from the lactam of 12-amino dodecanoic acid, etc. The single index used in describing these nylons indicates the number of carbon atoms in the repeat unit.

Keywords

Batch Reactor Monomer Conversion Reaction Mass Residence Time Distribution Cyclic Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. K. Reimschuessel, Nylon 6. Chemistry and mechanisms, J. Polym. Sci. Macromol Rev. 12, 65–139 (1977).CrossRefGoogle Scholar
  2. 2.
    H. K. Reimschuessel, in Ring Opening Polymerization (K. S. Frisch and S. L. Reegan, Eds.), 1st ed., pp. 303–326, Marcel Dekker, New York (1969).Google Scholar
  3. 3.
    K. Tai and T. Tagawa, Simulation of hydrolytic polymerization of ε-caprolactam in various reactors, Ind. Eng. Chem., Prod. R2D 22, 192–205 (1983).CrossRefGoogle Scholar
  4. 4.
    J. Sebenda, Recent progress in the polymerization of lactams, Prog. Polym. Sci. 6,123–168 (1978).CrossRefGoogle Scholar
  5. 5.
    S. K. Gupta and A. Kumar, Simulation and design of nylon 6 reactors, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C26, 183–246 (1986).Google Scholar
  6. 6.
    W. H. Carothers and G. T. Berchet, Studies on polymerization and ring formation. VIII. Amides from ε-aminocaproic acid, J. Am. Chem. Soc. 52, 5289–5291 (1930).CrossRefGoogle Scholar
  7. 7.
    P. H. Hermans, D. Heikens, and P. F. van Velden, On the mechanism of the polymerization of ε-caprolactam. II. The polymerization in the presence of water, J. Polym. Sci. 30, 81–104 (1958).CrossRefGoogle Scholar
  8. 8.
    Ch. A. Kruissink, G. M. van der Want, and A. J. Staverman, On the mechanism of the polymerization of ε-caprolactam. I. The polymerization initiated by ε-aminocaproic acid, J. Polym. Sci. 30, 67–80 (1958).CrossRefGoogle Scholar
  9. 9.
    K. Tai and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam. V. Equilibrium data on cyclic oligomers, J. Appl. Polym. Sci. 27, 2791–2796 (1982).CrossRefGoogle Scholar
  10. 10.
    H. K. Reimschuessel and G. J. Dege, Polyamides: Decarboxylation and desamination in nylon 6 equilibrium polymer, J. Polym. Sci. A-1 8, 3265–3283 (1970).CrossRefGoogle Scholar
  11. 11.
    G. J. Dege and H. K. Reimschuessel, Peroxidation of caprolactam and its effect on equilibrium polymerization of cyclic dimer. J. Polym. Sci., Polym. Chem. Ed. 11, 873–896 (1973).CrossRefGoogle Scholar
  12. 12.
    Y. Arai, K. Tai, H. Teranishi, and T. Tagawa, Kinetics of hydrolytic polymerization of ε-caprolactam. 3. Formation, Polymer 22, 273–277 (1981).CrossRefGoogle Scholar
  13. 13.
    K. Tai, H. Teranishi, Y. Arai, and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam, J. Appl. Polym. Sci. 24, 211–224 (1979).CrossRefGoogle Scholar
  14. 14.
    K. Tai, H. Teranishi, Y. Arai, and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam. II. Determination of the kinetic and thermodynamic constants by least-squares curve fitting, J. Appl. Polym. Sci. 25, 77–87 (1980).CrossRefGoogle Scholar
  15. 15.
    F. Wiloth, Mechanism and kinetics of the polymerization of ε-caprolactam in the presence of water. X. Comparison of experimental data with the integration results of a completed reaction-kinetic system of differential equations, Z. Phys. Chem. N.F. 11, 78–102 (1957).CrossRefGoogle Scholar
  16. 16.
    S. M. Skuratov, A. A. Strepichejev, and E. N. Kanarskaja, Über die wechselseitige umwandlung von zyklischen und linearen polymeren, Faserforsch. Textiltech 4, 390–392 (1953).Google Scholar
  17. 17.
    H. K. Reimschuessel and K. Nagasubramanian, On the optimization of caprolactam polymerization, Chem. Eng. Sci. 27, 1119–1130 (1972).CrossRefGoogle Scholar
  18. 18.
    S. K. Gupta, A. Kumar, P. Tandon, and C. D. Naik, Molecular weight distributions for reversible nylon-6 polymerizations in batch reactors, Polymer 22, 481–487 (1981).CrossRefGoogle Scholar
  19. 19.
    S. K. Gupta, C. D. Naik, P. Tandon, and A. Kumar, Simulation of molecular weight distribution and cyclic oligomer formation in the polymerization of nylon-6, J. Appl. Polym. Sci. 26, 2153–2163 (1981).CrossRefGoogle Scholar
  20. 20.
    S. K. Gupta, A. Kumar, and K. K. Agrawal, Simulation of three-stage nylon-6 reactors with intermediate mass transfer at finite rates, J. Appl. Polym. Sci. 27, 3089–3101 (1982).CrossRefGoogle Scholar
  21. 21.
    M. Cave, M.S. dissertation, Imperial College, London, UK (1975).Google Scholar
  22. 22.
    H. M. Hulburt and S. Katz, Some problems in particle technology: A statistical mechanical formulation, Chem. Eng. Sci. 19, 555–574 (1964).CrossRefGoogle Scholar
  23. 23.
    K. W. Min, On the application of fractional moments in determining average molecular weight, J. Appl. Polym. Sci. 22, 589–591 (1978).CrossRefGoogle Scholar
  24. 24.
    A. Gupta and K. S. Gandhi, Molecular weight distribution in batch hydrolytic polymeriz-ation of caprolactam, J. Appl. Polym. Sci. 27, 1099–1104 (1982).CrossRefGoogle Scholar
  25. 25.
    A Ramagopal, A. Kumar, and S. K. Gupta, Computational scheme for the calculation of molecular weight distributions for nylon 6 polymerization in homogeneous, continuous flow stirred tank reactors with continuous removal of water, Polym. Eng. Sci. 22, 849–856 (1982).CrossRefGoogle Scholar
  26. 26.
    S. K. Gupta and A. Kumar, Simulation of step growth polymerizations, Chem. Eng. Commun. 20, 1–52 (1983).CrossRefGoogle Scholar
  27. 27.
    K. Tai, Y. Arai, H. Teranishi, and T. Tagawa, The kinetics of hydrolytic polymerization of ε-caprolactam. IV. Theoretical aspect of the molecular weight distribution, J. Appl. Polym. Sci. 25, 1789 (1980).CrossRefGoogle Scholar
  28. 28.
    S. K. Gupta, D. Kunzru, A. Kumar, and K. K. Agrawal, Simulation of nylon 6 polymeri-zation in tubular reactors with recycle, J. Appl. Polym. Sci. 28, 1625–1640 (1983).CrossRefGoogle Scholar
  29. 29.
    Allied Chem. Corp., British Patent, 938652 (1963).Google Scholar
  30. 30.
    S. C. Chu and I. C. Twilley, 6th Annual Synthetic Fibers Symp., AIChE, Virginia, 1969.Google Scholar
  31. 31.
    K. Brown, in Numerical Solutions of Systems of Nonlinear Algebraic Equations (C. D. Byrne and C. A. Hall, Eds.), 1st ed., pp. 281–348, Academic, New York (1973).Google Scholar
  32. 32.
    K. Nagasubramanian and H. K. Reimschuessel, Caprolactam polymerization: Polymeri-zation in backmix flow systems, J. Appl. Polym. Sci. 16, 929–934 (1972).CrossRefGoogle Scholar
  33. 33.
    M. V. Tirrell, G. H. Pearson, R. A. Weiss, and R. L. Laurence, An analysis of caprolactam polymerization, Polym. Eng. Sci. 15, 386–393 (1975).CrossRefGoogle Scholar
  34. 34.
    K. Tai, Y. Arai, and T. Tagawa, The simulation of hydrolytic polymerization of ε-caprolactam in various reactors, J. Appl. Polym. Sci. 27, 731–736 (1982).CrossRefGoogle Scholar
  35. 35.
    A. Kumar and S. K. Gupta, Fundamentals of Polymer Science and Engineering ,1st ed., Tata McGraw-Hill, New Delhi, India (1978).Google Scholar
  36. 36.
    H. Jacobs and C. Schweigman, Mathematical model for the polymerization of caprolactam to nylon-6, Proc. 5th Eur./2nd Intl. Symp. Chem. Rxn. Eng., Amsterdam, 2–4 May, 1972, pp. B7.1–26.Google Scholar
  37. 37.
    Vereinigte Glanzstoff Fabriken, German Patent, 1167021 (1962).Google Scholar
  38. 38.
    O. Fukumoto, Equilibria between polycapramide and water, J. Polym. Sci. 22, 263–270 (1956).CrossRefGoogle Scholar
  39. 39.
    A. Gupta and K. S. Gandhi, in Frontiers of Chem. Rxn. Eng. (L. K. Doraiswamy and R. A. Mashelkar, Eds.), 1st ed., pp. 667–681, Wiley Eastern, New Delhi, India (1984).Google Scholar
  40. 40.
    A. Gupta, M. Tech. Dissertation, IIT, Kanpur, India (1981).Google Scholar
  41. 41.
    Encyclopedia of Industrial Chemical Analysis ,Vol. 8, pp. 115, Wiley, New York (1971).Google Scholar
  42. 42.
    International Critical Tables ,Vol. 3, 233 pp., McGraw-Hill, New York (1928).Google Scholar
  43. 43.
    C. Giori and B. T. Hayes, Hydrolytic polymerization of caprolactam. I. Hydrolysis-polycondensation kinetics;... II. Vapor-liquid equilibria, J. Polym. Sci. A-1 8, 335–349, 351–358 (1970).CrossRefGoogle Scholar
  44. 44.
    J. P. Roos, Mathematical modeling of the sorption of volatile components in Newtonian-high-viscous liquids with the aid of bubbling, Adv. Chem. Ser. 133, 303–315 (1974).CrossRefGoogle Scholar
  45. 45.
    P. Levenspiel, Chemical Reaction Engineering ,2nd ed., Chapt. 13, Wiley, New York (1972).Google Scholar
  46. 46.
    J. J. Carberry, Chemical and Catalytic Reaction Engineering ,1st ed., McGraw-Hill, New York (1976).Google Scholar
  47. 47.
    K. Nagasubramanian and H. K. Reimschuessel, Diffusion of water and caprolactam in nylon 6 melts, J. Appl. Polym. Sci. 17, 1663–1677 (1973).CrossRefGoogle Scholar
  48. 48.
    W. F. H. Naudin ten Cate, Application of the maximum principle of Pontryagin to optimize a nylon 6 continuous polymerization process, Proc. Internl. Cong. Use of Elec. Comp. in Chem. Eng., Paris, April 1973.Google Scholar
  49. 49.
    S. Mochizuki and N. Ito, Optimal polymerization temperature profile for nylon-6 with low cyclic oligomers content, Chem. Eng. Sci. 33, 1401–1403 (1978).CrossRefGoogle Scholar
  50. 50.
    P. J. Hoftyzer, J. Hoogschagen, and D. W. van Krevelen, Optimization of caprolactam polymerization, Proc. 3rd Eur. Symp. Chem. Rxn. Eng., Amsterdam, 15–17 Sept. 1964, pp. 247–253.Google Scholar
  51. 51.
    A. Ramagopal, A. Kumar, and S. K. Gupta, Optimal temperature profiles for nylon 6 polymerization in plug-flow reactors, J. Appl. Polym. Sci. 28, 2261–2279 (1983).CrossRefGoogle Scholar
  52. 52.
    S. K. Gupta, B. S. Damania, and A. Kumar, Optimization of nylon-6 reactors with end-point constraints, J. Appl. Polym. Sci. 29, 2177–2194 (1984).CrossRefGoogle Scholar
  53. 53.
    A. K. Ray and S. K. Gupta, Optimization of nonvaporizing nylon 6 reactors with stopping condition, J. Appl. Polym. Sci. 31, 4529–4550 (1986).Google Scholar
  54. 54.
    A. E. Bryson and Y. C. Ho, Applied Optimal Control ,1st ed., Blaisdell, Waltham, Massachusetts (1969).Google Scholar
  55. 55.
    A. Mochizuki and N. Ito, The hydrolytic polymerization kinetics of ε-caprolactam, Chem. Eng. Sci. 28, 1139–1147 (1973).CrossRefGoogle Scholar
  56. 56.
    J. A. Semlyen and G. R. Walker, Equilibrium ring concentrations and the statistical conformation of polymer chains. II. Macrocyclics in nylon 6, Polymer 10, 597–601 (1969).CrossRefGoogle Scholar
  57. 57.
    J. M. Andrews, F. R. Jones, and J. A. Semlyen, Equilibrium ring concentrations and the statistical conformations of polymer chains. 12. Cyclics in molten and solid nylon-6, Polymer 15, 420–424 (1974).CrossRefGoogle Scholar
  58. 58.
    H. Spoor and H. Zahn, Eine methode zur quantitativen papierchromatographischen bestimmung von sekundären aminen und amiden. 17. Mitteilung über oligomere, Z. Anal. Chem. 168, 190–195 (1959).CrossRefGoogle Scholar
  59. 59.
    H. Zahn and G. B. Gleitsman, Oligomers and pleionomers of synthetic fiber-forming polymers, Agnew. Chem. 75, 772–783 (1963).CrossRefGoogle Scholar
  60. 60.
    M. Rothe, Polymerhomologe ringamide in polycaprolactam, J. Polym. Sci. 30, 227–238 (1958).CrossRefGoogle Scholar
  61. 61.
    M. Mutter, U. W. Suter, and P. J. Flory, Macrocyclization equilibria. 3. Poly (6-aminocaproamide), J. Am. Chem. Soc. 98, 5745–5748 (1976).CrossRefGoogle Scholar
  62. 62.
    J. Jacobson and W. H. Stockmayer, Intramolecular reaction in polycondensations. I. The theory of linear systems, J. Chem. Phys. 18, 1600–1606 (1950).CrossRefGoogle Scholar
  63. 63.
    J. A. Semlyen, Ring-chain equilibria and conformation of polymer chains, Adv. Polym. Sci. 22, 41–75 (1976).CrossRefGoogle Scholar
  64. 64.
    P. J. Flory, U. W. Suter, and M. Mutter, Macrocyclization equilibria. I. Theory, J. Am. Chem. Soc. 98, 5733–5739 (1976).CrossRefGoogle Scholar
  65. 65.
    P. J. Flory, Statistical Mechanics of Chain Molecules ,1st ed., Wiley, New York (1969).Google Scholar
  66. 66.
    D. C. Jones and T. R. White, in Step Growth Polymerization (D. H. Solomon, Ed.), 1st ed., pp. 41–94, Marcel Dekker, New York (1972).Google Scholar
  67. 67.
    D. B. Jacobs and J. Zimmerman, in Polymerization Processes (C. E. Schildknecht and I. Skeist, Eds.), 1st ed., pp. 424–467, Wiley, New York (1977).Google Scholar
  68. 68.
    N. Ogata, Studies on poly condensation reactions of nylon salt. I. The equilibrium in the system of polyhexamethylene adipamide and water, Makromol. Chem. 42, 52–67 (1960).CrossRefGoogle Scholar
  69. 69.
    N. Ogata, Studies on polycondensation reactions of nylon salt. II. The rate of polycondensa-tion reaction of nylon 66 salt in the presence of water, Makromol. Chem. 43,117–131 (1961).CrossRefGoogle Scholar
  70. 70.
    A. Kumar, S. Kuruville, A. R. Raman, and S. K. Gupta, Simulation of reversible nylon-6,6 polymerization, Polymer 22, 387–390 (1981).CrossRefGoogle Scholar
  71. 71.
    A. Kumar, R. K. Agarwal, and S. K. Gupta, Simulation of reversible nylon-6,6 polymeri-zation in homogeneous continuous-flow stirred tank reactors, J. Appl Polym. Sci. 27, 1759–1769 (1982).CrossRefGoogle Scholar
  72. 72.
    F. C. Chen, R. G. Griskey, and G. H. Beyer, Thermally induced solid state polycondensation of nylon 6–6, nylon 6–10 and polyethylene terephthalate, AIChE J. 15, 680–685 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Santosh K. Gupta
    • 1
  • Anil Kumar
    • 1
  1. 1.Indian Institute of TechnologyKanpurIndia

Personalised recommendations