Skip to main content

Photoelectrochemical Devices for Solar Energy Conversion

  • Chapter
Modern Aspects of Electrochemistry

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 18))

Abstract

Photoelectrochemical cells are distinguished by the use of a semiconductor-electrolyte interface to create the necessary junction for use as a photovoltaic device.1-8 This chapter presents a description of this device from an electrochemical engineering viewpoint. The traditional chemical engineering fundamentals of transport phenomena, reaction kinetics, thermodynamics, and system design provide a useful foundation for the study of semiconducting devices. The motivation for the study of photoelectrochemical cells is discussed, and a physical description of the cell features is presented. A tutorial on the mechanism of cell operation is presented which includes descriptions of the phenomena of band-bending and straightening, the effect of interfacial phenomena, and current flow. Mathematical relationships are developed which describe this system, and the influence of cell design is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Bard, Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J. Photochem. 10 (1979) 59–75.

    CAS  Google Scholar 

  2. A. J. Bard, Photoelectrochemistry, Science 207 (1980) 139–144.

    CAS  Google Scholar 

  3. A. Fujishima and K. Honda, Electrochemical photolysis of water as a semiconductor electrode, Nature 238 (1972) 37–38.

    CAS  Google Scholar 

  4. J. Manassen, D. Cahen, and G. Hodes, Electrochemical, solid state, photochemical, and technological aspects of photoelectrochemical energy converters, Nature 263 (1976) 97–100.

    CAS  Google Scholar 

  5. H. Gerischer and J. Gobrecht, On the power-characteristics of electrochemical solar cells, Ber. Bunsenges. Phys. Chem. 80 (1976) 327–330.

    CAS  Google Scholar 

  6. H. Ehrenreich and J. H. Martin, Solar photovoltaic energy, Phys. Today 32(9) (1979) 25–32.

    CAS  Google Scholar 

  7. H. Gerischer, Heterogeneous electrochemical systems for solar energy conversion, Pure Appl. Chem. 52 (1980) 2649–2667.

    CAS  Google Scholar 

  8. A. Heller, Electrochemical solar cells, Solar Energy 29 (1982) 153–162.

    CAS  Google Scholar 

  9. M. Green, Electrochemistry of the semiconductor-electrolyte interface, Chap. 5 in Modern Aspects of Electrochemistry ,No. 2, Ed. by J. O’M. Bockris, Academic, New York, 1959.

    Google Scholar 

  10. H. Gerischer, Semiconductor electrode reactions, Chap. 4 in Advances in Electrochemistry and Electrochemical Engineering ,Vol. 1, Ed. by P. Delahay, Interscience, New York, 1961.

    Google Scholar 

  11. M. D. Archer, Electrochemical aspects of solar energy conversion, J. Appl. Electrochem. 5 (1975) 17–38.

    CAS  Google Scholar 

  12. K. Rajeshwar, P. Singh, and J. DuBow, Energy conversion in photoeleçtrochemical systems: A review, Electrochim. Acta 23 (1975) 1117–1144.

    Google Scholar 

  13. L. A. Harris and R. H. Wilson, Semiconductors for photoelectrolysis, Ann. Rev. Mater. Sci. 8 (1978) 99–134.

    CAS  Google Scholar 

  14. A. J. Nozik, Photoelectrochemistry: Applications to solar energy conversion, Ann. Rev. Phys. Chem. 29 (1978) 189–222.

    CAS  Google Scholar 

  15. M. Tomkiewicz and H. Fay, Photoelectrolysis of water with semiconductors, Appl. Phys. 18 (1979) 1–28.

    CAS  Google Scholar 

  16. R. H. Wilson, Electron transfer processes at the semiconductor-electrolyte interface, CRC Crit. Rev. Solid State Mater. Sci. 10 (1980) 1–41.

    CAS  Google Scholar 

  17. R. Memming, Charge transfer processes at semiconductor electrodes, in Electroanalytical Chemistry ,Ed. by Allen J. Bard, Marcel Dekker, New York, 1981, pp. 1–84.

    Google Scholar 

  18. S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes ,Plenum Press, New York, 1980.

    Google Scholar 

  19. U. M. Khan and J. O‘M Bockris, Photoelectrochemical kinetics and related devices, Chap. 3 in Modern Aspects of Electrochemistry ,No. 14, Ed. by J. O’M. Bockris, B. E. Conway, and R. E. White, Plenum Press, New York, 1982.

    Google Scholar 

  20. A. S. Grove, Physics and Technology of Semiconductor Devices ,Wiley, New York, 1967.

    Google Scholar 

  21. M. A. Omar, Elementary Solid State Physics: Principles and Applications ,Addison-Wesley, Menlo Park, California, 1975.

    Google Scholar 

  22. S. M. Sze, Physics of Semiconductor Devices ,Wiley-Interscience, New York, 1969.

    Google Scholar 

  23. N. B. Hannay, Semiconductor principles, Chap. 1 in Semiconductors ,Ed. by N. B. Hannay, Reinhold, New York, 1959.

    Google Scholar 

  24. A. F. Ioffe, Physics of Semiconductors ,Academic, New York, 1960.

    Google Scholar 

  25. J. Hovel, Solar cells, Vol. 11 of Semiconductors and Semimetals ,Ed. by R. K. Willardson and Albert C. Beer, Academic, New York, 1975.

    Google Scholar 

  26. H. J. Hovel, Photovoltaic materials and devices for terrestrial solar energy applications, Solar Energy Mater. 2 (1980) 277–312.

    CAS  Google Scholar 

  27. S. Wagner, Physico-chemical problems in photovoltaic research, Ber. Bunsenges. Phys. Chem. 84 (1980) 991–995.

    CAS  Google Scholar 

  28. A. Heller, Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells, Acc. Chem. Res. 14 (1981) 154–162.

    CAS  Google Scholar 

  29. K. W. Mitchell, Status of new thin-film photovoltaic technologies, Ann. Rev. Mater. Sci. 12 (1982) 401–415.

    CAS  Google Scholar 

  30. D. C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev. 41 (1947) 441–501.

    CAS  Google Scholar 

  31. J. F. Dewald, Semiconductor electrodes, Chap. 17 in Semiconductors ,Ed. by N. B. Hannay, Reinhold, New York, 1959.

    Google Scholar 

  32. M. J. Sparnaay, The Electrical Double Layer ,Pergamon, New York, 1972.

    Google Scholar 

  33. J. Newman, Electrochemical Systems ,Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  34. S. J. Fonash, Solar Cell Device Physics ,Academic, New York, 1981.

    Google Scholar 

  35. M. E. Orazem, Mathematical modeling and optimization of liquid-junction photovoltaic cells ,Ph.D. dissertation, Department of Chemical Engineering, University of California, Berkeley, June 1983, LBL-16131.

    Google Scholar 

  36. M. E. Orazem and J. Newman, Mathematical modeling of liquid-junction photovoltaic cells: I. Governing equations, J. Electrochem. Soc. 131 (1984) 2569–2574.

    CAS  Google Scholar 

  37. M. E. Orazem and J. Newman, Mathematical modeling of liquid-junction photovoltaic cells: II. Effect of system parameters on current-potential curves, J. Electrochem. Soc. 131 (1984) 2574–2582.

    CAS  Google Scholar 

  38. E. A. Guggenheim, The conceptions of electrical potential difference between two phases and the individual activities of ions, J. Phys. Chem. 33 (1929) 842– 849.

    CAS  Google Scholar 

  39. R. Memming, Solar energy conversion by photoelectrochemical processes, Electrochim. Acta 25 (1980) 77–88.

    CAS  Google Scholar 

  40. R. Parsons, Equilibrium properties of electrified interphases, Chap. 3 in Modern Aspects of Electrochemistry ,No. 1, Ed. by J. O’M. Bockris, Academic, New York, 1954, pp. 103–179.

    Google Scholar 

  41. A. J. Rosenberg, Activity coefficients of electrons and holes at high concentrations, J. Chem. Phys. 33 (1960) 655–667.

    Google Scholar 

  42. W. W. Harvey, The relation between the chemical potential of electrons and energy band parameters of the band theory as applied to semiconductors, J. Phys. Chem. Solids 23 (1962) 1545–1548.

    CAS  Google Scholar 

  43. P. T. Landsberg and A. G. Guy, Activity coefficient and the Einstein relation, Phys. Rev. B: Condensed Matter 28 (1983) 1187–1188.

    Google Scholar 

  44. M. B. Panish and H. C. Casey, Jr., The solid solubility limits of zinc in GaAs at 1000°, J. Phys. Chem. Solids 28 (1967) 1673–1684.

    CAS  Google Scholar 

  45. M. B. Panish and H. C. Casey, Jr., The 1040° solid solubility isotherm of zinc in GaP: the Fermi level as a function of hole concentration, J. Phys. Chem. Solids 28 (1968) 1719–1726.

    Google Scholar 

  46. J. C. Hwang and J. R. Brews, Electron activity coefficients in heavily doped semiconductors with small effective mass, J. Phys. Chem. Solids 32 (1971) 837–845.

    CAS  Google Scholar 

  47. N. G. Nilsson, Empirical approximation for the Fermi energy in a semiconductor with parabolic bands, Appl. Phys. Lett. 33 (1978) 653–654.

    Google Scholar 

  48. J. S. Blakemore, Approximations for Fermi-Dirac integrals, especially of order 1/2 used to describe electron density in a semiconductor, Solid State Electron. 25 (1982) 1067–1076.

    CAS  Google Scholar 

  49. X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, An analytical approximation for the Fermi-Dirac integral F1/2 , Solid State Electron. 24 (1981) 981–982.

    CAS  Google Scholar 

  50. M. A. Shibib, Inclusion of degeneracy in the analysis of heavily doped regions in silicon solar cells and other semiconductor devices, Solar Cells 3 (1981) 81–85.

    CAS  Google Scholar 

  51. H. P. D. Lanyon, The physics of heavily doped n+-p junction solar cells, Solar Cells 3 (1981) 289–311.

    CAS  Google Scholar 

  52. S. R. Dhariwal and V. N. Ojha, Band gap narrowing in heavily doped silicon, Solid State Electron. 25 (1982) 909–911.

    CAS  Google Scholar 

  53. F. A. Lindholm and J. G. Fossum, Pictorial derivation of the influence of degeneracy and disorder on nondegenerate minority-carrier concentration and recombination current in heavily doped silicon, IEEE Electron Device Lett. EDL-2 (1981) 230–234.

    CAS  Google Scholar 

  54. R. A. Abram, G. J. Rees, and B. L. H. Wilson, Heavily doped semiconductor devices, Adv. Phys. 27 (1978) 799–892.

    CAS  Google Scholar 

  55. G. D. Mahan, Energy gap in Si and Ge: Impurity dependence, J. Appl. Phys. 51 (1980) 2634–2646.

    CAS  Google Scholar 

  56. D. S. Lee and J. G. Fossum, Energy band distortion in highly doped silicon, IEEE Trans. Electron Devices ED-30 (1983) 626–634.

    CAS  Google Scholar 

  57. S. Selberherr, Analysis and Simulation of Semiconductor Devices ,Springer-Verlag, New York, 1984.

    Google Scholar 

  58. M. E. Orazem and J. Newman, Activity coefficients of electrons and holes in semiconductors, J. Electrochem. Soc. 131 (1984) 2715–2717.

    CAS  Google Scholar 

  59. D. B. Bonham and M. E. Orazem, Activity coefficients of electrons and holes in semiconductors with a parabolic density of states, J. Electrochem. Soc. (in press).

    Google Scholar 

  60. A. G. Guy, Calculation of activity coefficients of conduction electrons in metals and semiconductors, Solid State Electron. 26 (1983) 433–436.

    CAS  Google Scholar 

  61. P. T. Landsberg and S. A. Hope, Two formulations of semiconductor transport equations, Solid State Electron. 20 (1977) 421–429.

    Google Scholar 

  62. M. S. Lundstrom, R. J. Schwartz, and J. L. Gray, Transport equations for the analysis of heavily doped semiconductor devices, Solid State Electron. 24 (1981) 195–202.

    CAS  Google Scholar 

  63. A. H. Marshak and R. Shrivastava, Calculation of the electric field enhancement for a degenerate diffusion process, Solid State Electron. 25 151–153.

    Google Scholar 

  64. D. Kumar and S. K. Sharma, Theory of open circuit photo-voltage in degenerate abrupt p-n junctions, Solid State Electron. 25 (1982) 1161–1164.

    Google Scholar 

  65. P. T. Landsberg, Thermodynamics and Statistical Mechanics ,Oxford University Press, New York, 1978, p. 327.

    Google Scholar 

  66. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena ,Wiley, New York, 1960.

    Google Scholar 

  67. R. A. Smith, Semiconductors ,Cambridge University Press, London, 1959.

    Google Scholar 

  68. R. G. Shulman, Recombination and trapping, Chap. 11 in Semiconductors ,Ed. by N. B. Hannay, Reinhold, New York, 1959.

    Google Scholar 

  69. J. L. Moll, Physics of Semiconductors ,McGraw-Hill, New York, 1964.

    Google Scholar 

  70. H. Gerischer, Semiconductor electrochemistry, Chap. 5 in Physical Chemistry: An Advanced Treatise ,Vol. IX, Ed. by H. Eyring, Academic, New York, 1970.

    Google Scholar 

  71. P. Delahay, Double Layer and Electrode Kinetics ,Interscience, New York, 1965.

    Google Scholar 

  72. H. Oman and J. W. Gelzer, Solar cells and arrays, in Energy Technology Handbook ,Ed. by Douglas M. Considine, McGraw-Hill, New York, 1977, pp. 6.56-6.80.

    Google Scholar 

  73. M. A. Russak, J. Reichman, H. Witzke, S. K. Deb, and S. N. Chen, Thin film CdSe photoanodes for electrochemical photovoltaic solar cells, J. Electrochem. Soc. 127 (1980) 725–733.

    CAS  Google Scholar 

  74. M. S. Kazacos and B. Miller, Electrodeposition of CdSe films from selenosulfite solution, J. Electrochem. Soc. 127 (1980) 2378–2381.

    CAS  Google Scholar 

  75. C.-H. J. Liu, J. Olsen, D. R. Saunders, and J. H. Wang, Photoactivation of CdSe films for photoelectrochemical cells, J. Electrochem. Soc. 128 (1981) 1224–1228.

    CAS  Google Scholar 

  76. C.-H. J. Liu and J. H. Wang, Spray-pyrolyzed thin film CdSe photoelectrochemical cells, J. Electrochem. Soc. 129 (1982) 719–722.

    CAS  Google Scholar 

  77. D. R. Pratt, M. E. Langmuir, R. A. Boudreau, and R. D. Rauh, Chemically deposited CdSe thin films for photoelectrochemical cells, J. Electrochem. Soc. 128 (1981) 1627–1629.

    CAS  Google Scholar 

  78. K. Rajeshwar, L. Thompson, P. Singh, R. C. Kainthla, and K. L. Chopra, Photoelectrochemical characterization of CdSe thin film anodes, J. Electrochem. Soc. 128 (1981) 1744–1750.

    CAS  Google Scholar 

  79. J. Reichman and M. A. Russak, Properties of CdSe thin films for photoelectrochemical cells, J. Electrochem. Soc. 128 (1981) 2025–2029.

    CAS  Google Scholar 

  80. J. Reichman and M. A. Russak, Improved efficiency of w-CdSe thin-film photoelectrodes by zinc surface treatment, J. Appl. Phys. 53 (1982) 708–711.

    CAS  Google Scholar 

  81. G. J. Houston, J. F. McCann, and D. Haneman, Optimizing the photoelectrochemical performance of electrodeposited CdSe semiconductor electrodes, J. Electroanal. Chem. 134 (1982) 37–47.

    CAS  Google Scholar 

  82. B. Miller, A. Heller, M. Robbins, S. Menezes, K. C. Chang, and J. Thomson, Jr., Solar conversion efficiency of pressure-sintered cadmium selenide liquid-junction cells, J. Electrochem. Soc. 124 (1977) 1019–1021.

    CAS  Google Scholar 

  83. A. Heller, K. C. Chang, and B. Miller, Spectral response and efficiency relations in semiconductor liquid junction solar cells, J. Electrochem. Soc. 124 (1977) 697–700.

    CAS  Google Scholar 

  84. B. Miller and A. Heller, Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262 (1976) 680–681.

    CAS  Google Scholar 

  85. L. M. Peter, The photoelectrochemical properties of anodic cadmium sulphide films, Electrochim. Acta 23 (1978) 1073–1080.

    CAS  Google Scholar 

  86. C. C. Tsou and J. R. Cleveland, Polycrystalline thin-film CdSe liquid junction photovoltaic cell, J. Appl. Phys. 51 (1980) 455–458.

    CAS  Google Scholar 

  87. R. A. L. Vanden Berghe, W. P. Gomes, and F. Cardon, Some aspects of the anodic behavior of CdS single crystals in indifferent electrolyte solutions, Ber. Bunsenges. Phys. Chem. 11 (1973) 289–293.

    Google Scholar 

  88. A. Heller, B. Miller, S. S. Chu, and Y. T. Lee, 7.3% efficient thin-film, polycrystalline n-Ga As semiconductor liquid junction solar cell, J. Am. Chem. Soc. 101 (1979) 7633–7634.

    CAS  Google Scholar 

  89. W. D. Johnston, Jr., H. J. Leamy, B. A. Parkinson, A. Heller, and B. Miller, Effect of ruthenium ions on grain boundaries in gallium arsenide thin film photovoltaic devices, J. Electrochem. Soc. 127 (1980) 90–95.

    CAS  Google Scholar 

  90. R. Noufi and D. Tench, High efficiency GaAs photoanodes, J. Electrochem. Soc. 121 (1980) 188–190.

    Google Scholar 

  91. A. Heller and B. Miller, Photoelectrochemical solar cells: Chemistry of the semiconductor-liquid junction, Chap. 12 in Interfacial Photoprocesses: Energy Conversion and Synthesis, Advances in Chemistry Series, 184, Ed. by M. S. Wrighton, American Chemical Society, Washington, D.C., 1980.

    Google Scholar 

  92. B. A. Parkinson, A. Heller, and B. Miller, Enhanced photoeletrochemical solar-energy conversion by gallium-arsenide surface modification, Appl. Phys. Lett. 33 (1978) 521–523.

    CAS  Google Scholar 

  93. J. Belloni, G. Van Amerongen, M. Herlem, J.-L. Sculfort, and R. Heindl, Photo-currents from semiconductor-liquid ammonia junctions, J. Phys. Chem. 84 (1980) 1269–1270.

    CAS  Google Scholar 

  94. M. A. Butler, R. D. Nasby, and R. K. Quinn, Tungsten trioxide as an electrode for photoelectrolysis of water, Solid State Commun. 19 (1976) 1011–1014.

    CAS  Google Scholar 

  95. M. P. Dare-Edwards, A. Hamnett, and J. B. Goodenough, The efficiency of photogeneration of hydrogen at p-type III/V semiconductors, J. Electroanal. Chem. 119 (1981) 109–123.

    CAS  Google Scholar 

  96. A. B. Ellis, S. W. Kaiser, and M. S. Wrighton, Semiconducting potassium tantalate electrodes. Photoassistance agents for the efficient electrolysis of water, J. Phys. Chem. 80 (1976) 1325–1328.

    CAS  Google Scholar 

  97. F.-R. F. Fan, H. S. White, R. Wheeler, and A. J. Bard, Semiconductor electrodes: XXIX. High efficiency photoelectrochemical solar cells with w-WSe2 electrodes in an aqueous iodide medium, J. Electrochem. Soc. 127 (1980) 518–520.

    CAS  Google Scholar 

  98. W. Gissler, P. L. Lensi, and S. Pizzini, Electrochemical investigation of an illuminated TiO2 electrode, J. Appl. Electrochem. 6 (1976) 9–13.

    CAS  Google Scholar 

  99. J. Gobrecht, R. Potter, R. Nottenburg, and S. Wagner, An n-CdSe/SnO2/n-Si tandem electrochemical solar cell, J. Electrochem. Soc. 130 (1983) 2280–2283.

    CAS  Google Scholar 

  100. K. Hirano and A. J. Bard, Semiconductor electrodes: XXVIII. Rotating ring-disk electrode studies of photo-oxidation of acetate and iodide at w-TiO2, J. Electrochem. Soc. 127 (1980) 1056–1059.

    CAS  Google Scholar 

  101. P. A. Kohl and A. J. Bard, Semiconductor electrodes: XVII. Electrochemical behavior of n- and p-type InP electrodes in acetonitrile solutions, J. Electrochem. Soc. 126 (1979) 598–608.

    CAS  Google Scholar 

  102. H. H. Kung, H. S. Jarrett, A. W. Sleight, and A. Ferretti, Semiconducting oxide anodes in photoassisted electrolysis of water, J. Appl. Phys. 48 (1977) 2463–2469.

    CAS  Google Scholar 

  103. Y. Nakato, N. Takamori, and H. Tsubomura, A composite semiconductor photoanode for water electrolysis, Nature 295 (1982) 312–313.

    CAS  Google Scholar 

  104. K. Uosaki and H. Kita, Photoelectrochemical characteristics of semiconductormetal/SPE/metal cells, J. Electrochem. Soc. 130 (1983) 2179–2184.

    CAS  Google Scholar 

  105. D. Cahen, J. Manassen, and G. Hodes, Materials aspect of photoelectrochemical systems, Solar Energy Mater. 1 (1979) 343–355.

    CAS  Google Scholar 

  106. A. W. Czanderna, Stability of interfaces in solar energy materials, Solar Energy Mater. 5 (1981) 349–377.

    CAS  Google Scholar 

  107. L. E. Murr, Interfacial phenomena in solar materials, Solar Energy Mater. 5 (1981) 1–19.

    CAS  Google Scholar 

  108. J. J. Loferski, Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, J. Appl. Phys. 27 (1956) 777–784.

    CAS  Google Scholar 

  109. J.J. Loferski, Recent research on photovoltaic solar energy converters, Proc. IEEE 51 (1963) 661–614.

    Google Scholar 

  110. J. J. Wysocki, Photon spectrum outside the earth’s atmosphere, Solar Energy 6 (1962) 104.

    CAS  Google Scholar 

  111. M. Wolf, Limitations and possibilities for improvement of photovoltaic solar energy converters, Part I: Considerations for earth’s surface operation, Proc. IRE 48 (1960) 1246–1263.

    Google Scholar 

  112. W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510–519.

    CAS  Google Scholar 

  113. K. C. Chang, A. Heller, B. Schwartz, S. Menezes, and B. Miller, Stable semiconductor liquid-junction cell with 9% solar to electrical conversion efficiency, Science 196 (1977) 1097–1098.

    CAS  Google Scholar 

  114. A. B. Ellis, J. M. Bolts, S. W. Kaiser, and M. S. Wrighton, Study of n-type gallium arsenide- and gallium phosphide-based photoelectrochemical cells. Stabilization by kinetic control and conversion of optical energy to electricity, J. Am. Chem. Soc. 99 (1977) 2848–2854.

    CAS  Google Scholar 

  115. P. Josseaux, A. Kirsch-De Mesmaeker, J. Riga, and J. Verbist, Improvements of CdS film photoanodic behavior by sulfur organic reducing agents, J. Electrochem. Soc. 130 (1983) 1067–1074.

    CAS  Google Scholar 

  116. M. S. Wrighton, J. M. Bolts, A. B. Bocarsly, M. C. Palazzotto, and E. G. Walton, Stabilization of n-type semiconductors to photoanodic dissolution: II-VI and III-V compound semiconductors and recent results for n-type silicon, /. Vac. Sci. Technol. 15 (1978) 1429–1435.

    CAS  Google Scholar 

  117. A. Heller, B. Miller, and F. A. Thiel, 11.5% Solar conversion efficiency in the photocathodically protected p-InP/V3+-V2+-HCl semiconductor liquid-junction cell, Appl. Phys. Lett. 38 (1981) 282–284.

    CAS  Google Scholar 

  118. D. S. Ginley, R. J. Baughman, and M. A. Butler, BP-Stabilized n-Si and n-GaAs photoanodes, J. Electrochem. Soc. 130 (1983) 1999–2002.

    CAS  Google Scholar 

  119. H. Gerischer, Photoelectrochemical solar cells, in Proceedings of the 2nd Electrochemical Photovoltaic Solar Energy Conference ,Ed. by R. van Overstraeten and W. Palz, Reidel, Boston, 1979, pp. 408–431.

    Google Scholar 

  120. S. Menezes, A. Heller, and B. Miller, Metal filmed-semiconductor photoelectrochemical cells, J. Electrochem. Soc. 127 (1980) 1268–1273.

    CAS  Google Scholar 

  121. K. W. Frese, Jr., M. J. Madou, and S. R. Morrison, Investigation of photoelectrochemical corrosion of semiconductors: III. Effects of metal layers on the stability of GaAs, J. Electrochem. Soc. 128 (1981) 1939–1943.

    CAS  Google Scholar 

  122. R. Noufi, D. Tench, and L. F. Warren, Protection of n-GaAs photoanodes with photoelectrochemically generated polypyrrole films,J. Electrochem. Soc. 127 (1980) 2310–2311.

    CAS  Google Scholar 

  123. R. Noufi, D. Tench, and L. F. Warren, Protection of semiconductor photoanodes with photoelectrochemically generated polypyrrole films, J. Electrochem. Soc. 128 (1981) 2596–2599.

    CAS  Google Scholar 

  124. T. Skotheim, I. Lundstrom, and J. Prejza, Stabilization of n-Si photoanodes to surface corrosion in aqueous electrolyte with a thin film of polypyrrole, J. Electrochem. Soc. 128 (1981) 1625–1626.

    CAS  Google Scholar 

  125. T. Skotheim, L.-G. Petersson, O. Inganas, and I. Lundstrom, Photoelectrochemical behavior of n-Si electrodes protected with Pt-polypyrrole, J. Electrochem. Soc. 129 (1982) 1737–1741.

    CAS  Google Scholar 

  126. F.-R. F. Fan, R. L. Wheeler, A. J. Bard, and R. N. Noufi, Semiconductor electrodes XXXIX. Techniques for stabilization of n-silicon electrodes in aqueous solution photoelectrochemical cells, J. Electrochem. Soc. 128 (1981) 2042–2045.

    CAS  Google Scholar 

  127. R. A. Bull, F.-R. F. Fan and A. J. Bard, Polymer films on electrodes VII. Electrochemical behavior at polypyrrole-coated platinum and tantalum electrodes, J. Electrochem. Soc. 129 (1982) 1009–1015.

    CAS  Google Scholar 

  128. K. Rajeshwar, M. Kaneko, and A. Yamada, Regenerative photoelectrochemical cells using polymer-coated n-GaAs photoanodes in contact with aqueous electrolytes, J. Electrochem. Soc. 130 (1983) 38–43.

    CAS  Google Scholar 

  129. H. S. White, H. D. Abruna, and A. J. Bard, Semiconductor electrodes XLI. Improvement of performance of n-WSe2 electrodes by electrochemical polymerization of o-phenylenediamine at surface imperfections, J. Electrochem. Soc. 129 (1982) 265–271.

    CAS  Google Scholar 

  130. L. Fornarini, F. Stirpe, and B. Scrosati, Electrochemical solar cells with layer-type semiconductor anodes: Stabilization of the semiconductor electrode by selective polyindole electrodeposition, J. Electrochem. Soc. 130 (1983) 2184– 2187.

    CAS  Google Scholar 

  131. M. S. Wrighton, Photoelectrochemical conversion of optical energy to electricity and fuels, Acc. Chem. Res. 12 (1979) 303–310.

    CAS  Google Scholar 

  132. H. Gerischer, On the stability of semiconductor electrodes against photo-decomposition, J. Electroanal Chem. 82 (1977) 133–143.

    CAS  Google Scholar 

  133. G. L. Araujo, and E. Sanchez, Analytical expressions for the determination of the maximum power point and the fill factor of a solar cell, Solar Cells 5 (1982) 377–386.

    CAS  Google Scholar 

  134. J. P. Charles, M. Zaghdoudi, P. Mialhe, and A. Marrakchi, An analytical model for solar cells, Solar Cells 3 (1981) 45–56.

    Google Scholar 

  135. J. P. Charles, M. Abdelkrim, Y. H. Muoy, and P. Mialhe, A practical method of analysis of the current-voltage characteristics of solar cells, Solar Cells 4 (1981) 169–178.

    CAS  Google Scholar 

  136. A. De Vos, The fill factor of a solar cell from a mathematical point of view, Solar Cells 8 (1983) 283–296.

    Google Scholar 

  137. G. S. Kousik and J. G. Fossum, P+-N-N+ Solar cells with hole diffusion lengths comparable with the base width: A simple analytic model, Solar Cells 5 (1981– 1982) 75–79.

    Google Scholar 

  138. W. A. Miller and L. C. Olsen, Model calculations for silicon inversion layer solar cells, Solar Cells 8 (1983) 371–395.

    CAS  Google Scholar 

  139. P. Panayotatos and H. C. Card, Recombination in the space-charge region of Schottky barrier solar cells, Solid State Electron. 23 (1980) 41–47.

    CAS  Google Scholar 

  140. C. M. Singal, Analytical expressions for the series-resistance-dependent maximum power point and curve factor for solar cells, Solar Cells 3 (1981) 163–177.

    Google Scholar 

  141. E. J. Soukup and D. R. Slocum, A model for the collection of minority carriers generated in the depletion region of a Schottky barrier solar cell, Solar Cells 7 (1982-1983) 297–310.

    CAS  Google Scholar 

  142. G. P. Srivastava, P. K. Bhatnagar, and S. R. Dhariwal, Theory of metal-oxide-semiconductor solar cells, Solid State Electron. 22 (1979) 581–587.

    CAS  Google Scholar 

  143. N. G. Tarr and D. L. Pulfrey, An investigation of dark current and photocurrent superposition in photovoltaic devices, Solid State Electron. 22 (1979) 265–270.

    CAS  Google Scholar 

  144. R. Tenne, N. Muller, Y. Mirovsky, and D. Lando, The relation between performance and stability of Cd-chalcogenide/polysulfide photoelectrochemical cells: I. Model and the effect of photoetching, J. Electrochem. Soc. 130 (1983) 852–860.

    CAS  Google Scholar 

  145. K. M. Van Vliet and A. H. Marshak, The Schottky-like equations for the carrier densities and the current flows in materials with a nonuniform composition, Solid State Electron. 23 (1980) 49–53.

    Google Scholar 

  146. W. W. Gärtner, Depletion-layer photoeffects in semiconductors, Phys. Rev. 116 (1959) 84–87.

    Google Scholar 

  147. M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO3, J. Appl. Phys. 48 (1977) 1914–1920.

    CAS  Google Scholar 

  148. W. Kautek, H. Gerischer, and H. Tributsch, The role of carrier diffusion and indirect optical transitions in the photoelectrochemical behavior of layer type d-band semiconductors, J. Electrochem. Soc. 127 (1980) 2471–2478.

    CAS  Google Scholar 

  149. L. McC. Williams, Structural and photoelectrochemical properties of plasma deposited titanium dioxide ,Ph.D. thesis, University of California, Berkeley, December, 1982, LBL-14994.

    Google Scholar 

  150. R. H. Wilson, A model for the current-voltage curve of photoexcited semiconductor electrodes, J. Appl. Phys. 48 (1977) 4292–4297.

    CAS  Google Scholar 

  151. R. H. Wilson, A model for the current-voltage curve of photoexcited semiconductor electrodes, in Semiconductor Liquid-Junction Solar Cells ,Ed. by A. Heller, The Electrochemical Society, Princeton, New Jersey, 1977.

    Google Scholar 

  152. W, J. Albery, P. N. Bartlett, A. Hamnett, and M. P. Dare-Edwards, The transport and kinetics of minority carriers in illuminated semiconductor electrodes, J. Electrochem. Soc. 128 (1981) 1492–1501.

    CAS  Google Scholar 

  153. W. J. Albery and P. N. Bartlett, The recombination of photogenerated minority carriers in the depletion layer of semiconductor electrodes, J. Electrochem. Soc. 130 (1983) 1699–1706.

    CAS  Google Scholar 

  154. W. J. Albery and P. N. Bartlett, The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles, J. Electrochem. Soc. 131 (1984) 315–325.

    CAS  Google Scholar 

  155. J. Reichman, The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells, Appl. Phys. Lett. 36 (1980) 574–577.

    CAS  Google Scholar 

  156. J. Reichman, Collection efficiency of low-mobility solar cells, Appl. Phys. Lett. 38 (1981) 251–253.

    CAS  Google Scholar 

  157. H. Reiss, Photocharacteristics for electrolyte-semiconductor junctions, J. Electrochem. Soc. 125 (1978) 937–949.

    CAS  Google Scholar 

  158. W. L. Ahlgren, Analysis of the current-voltage characteristics of photoelectrolysis cells, J. Electrochem. Soc. 128 (1981) 2123–2128.

    CAS  Google Scholar 

  159. J. F. McCann and D. Haneman, Recombination effects on current-voltage characteristics of illuminated surface barrier cells, J. Electrochem. Soc. 129 (1982) 1134–1145.

    CAS  Google Scholar 

  160. J. F. McCann, S. Hinckley, and D. Haneman, An analysis of the current-voltage characteristics of thin-film front wall illuminated and back wall illuminated liquid junction and Schottky barrier solar cells, J. Electrochem. Chem. 137 (1982) 17–37.

    CAS  Google Scholar 

  161. K. E. Heusler and M. Schulze, Electron-transfer reactions at semiconducting anodic niobium oxide films, Electrochim. Acta 20 (1975) 237–244.

    CAS  Google Scholar 

  162. F. Williams and A. J. Nozik, Irreversibilities in the mechanism of photoelectrolysis, Nature 271 (1978) 137–139.

    CAS  Google Scholar 

  163. R. H. Wilson, Observation and analysis of surface states on TiO electrodes in aqueous electrolytes, J. Electrochem. Soc. 127 (1980) 228–234.

    CAS  Google Scholar 

  164. S. M. Ahmed and H. Gerischer, Influence of crystal surface orientation on redox reactions at semiconducting MoS2, Electrochim. Acta 24 (1979) 705–711.

    CAS  Google Scholar 

  165. A. Aruchamy and M. S. Wrighton, A comparison of the interface energetics for n-type cadmium sulfide- and cadmium telluride-nonaqueous electrolyte junctions, J. Phys. Chem. 84 (1980) 2848–2854.

    CAS  Google Scholar 

  166. A. J. Bard, A. B. Bocarsly, F.-R. F. Fan, E. G. Walton, and M. S. Wrighton, The concept of Fermi level planning at semiconductor-liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices, J. Am. Chem. Soc. 102 (1980) 3671–3677.

    CAS  Google Scholar 

  167. F.-R. F. Fan and A. J. Bard, Semiconductor electrodes. 24. Behavior and photoelectrochemical cells based on p-type GaAs in aqueous solutions, J. Am. Chem. Soc. 102 (1980) 3677–3683.

    CAS  Google Scholar 

  168. A. B. Bocarsly, D. C. Bookbinder, R. N. Dominey, N. S. Lewis, and M. S. Wrighton, Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for Fermi level pinning, J. Am. Chem. Soc. 102 (1980) 3683–3688.

    CAS  Google Scholar 

  169. G. Nagasubramanian, B. L. Wheeler, and A. J. Bard, Semiconductor electrodes: XLIX. Evidence for Fermi level pinning and surface-state distributions from impedence measurements in acetonitrile solutions with various redox couples, J. Electrochem. Soc. 130 (1983) 1680–1688.

    CAS  Google Scholar 

  170. D. C. Card and H. C. Card, Interfacial oxide layer mechanisms in the generation of electricity and hydrogen by solar photoelectrochemical cells, Solar Energy 28 (1982) 451–460.

    CAS  Google Scholar 

  171. R. Haak and D. Tench, Electrochemical photocapacitance spectroscopy method for characterization of deep levels and interface states in semiconductor materials, J. Electrochem. Soc. 131 (1984) 275–283.

    CAS  Google Scholar 

  172. W. Siripala and M. Tomkiewicz, Surface recombination at n-TiO2 electrodes in photoelectrolytic solar cells, J. Electrochem. Soc. 130 (1983) 1062–1067.

    CAS  Google Scholar 

  173. K. Uosaki and H. Kita, Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott-Schottky plot, J. Electrochem. Soc. 130 (1983) 895–897.

    CAS  Google Scholar 

  174. C. G. B. Garrett and W. H. Brattain, Physical theory of semiconductor surfaces, Phys. Rev. 99 (1955) 376–387.

    Google Scholar 

  175. E. O. Johnson, Large-signal surface photovoltage studies with germanium, Phys. Rev. 111 (1958) 153–166.

    CAS  Google Scholar 

  176. A. Many, Y. Goldstein and N. B. Grover, Semiconductor Surfaces ,North-Holland, Amsterdam, 1965.

    Google Scholar 

  177. S. R. Morrison, The Chemical Physics of Surfaces ,Plenum Press, New York, 1977.

    Google Scholar 

  178. J. O’M. Bockris and K. Uosaki, The theory of the light-induced evolution of hydrogen at semiconductor electrodes, J. Electrochem. Soc. 125 (1978) 223–227.

    CAS  Google Scholar 

  179. R. Memming, The role of energy levels in semiconductor-electrolyte solar cells, J. Electrochem. Soc. 125 (1978) 117–123.

    CAS  Google Scholar 

  180. K. W. Frese, Jr., A study of rearrangement energies of redox species, J. Phys. Chem. 85 (1981) 3911–3916.

    CAS  Google Scholar 

  181. W. Kautek and H. Gerischer, A kinetic derivation of the photovoltage for electrochemical solar cells employing small-band gap semiconductors, Electrochim. Acta 27 (1982) 355–358.

    CAS  Google Scholar 

  182. K. Rajeshwar, Charge transfer in photoelectrochemical devices via interface states: United model and comparison with experimental data, J. Electrochem. Soc. 129 (1982) 1003–1008.

    CAS  Google Scholar 

  183. J.-N. Chazalviel, Electrochemical transfer via surface states: A new formulation for the semiconductor-electrolyte interface, J. Electrochem. Soc. 129 (1982) 963– 969.

    CAS  Google Scholar 

  184. P. Singh, K. Rajeshwar, R. Singh, and J. DuBow, Estimation of series resistance losses and ideal fill factors for photoelectrochemical cells, J. Electrochem. Soc. 128 (1981) 1396–1398.

    CAS  Google Scholar 

  185. J. F. McCann, S. P. S. Badwal, and J. Pezy, The electrical analogue of an n-SnO2-1 M NaOH-Pt cell, J. Electroanal. Chem. 118 (1981) 115–130.

    CAS  Google Scholar 

  186. J. F. McCann and S. P. S. Badwal, Equivalent circuit analysis of the impedance response of semiconductor-electrolyte-counterelectrode cells, J. Electrochem. Soc. 129 (1982) 551–559.

    CAS  Google Scholar 

  187. J. R. Macdonald, Accurate solution of an idealized one-carrier metal-semiconductor junction problem, Solid-State Electron. 5 (1962) 11–37.

    Google Scholar 

  188. A. De Mari, An accurate numerical steady-state one-dimensional solution of the p-n junction, Solid-State Electron. 11 (1968) 33–58.

    Google Scholar 

  189. A. De Mari, An accurate numerical steady-state one-dimensional solution of the p-n junction under arbitrary transient conditions, Solid-State Electron. 11 (1968) 1021–1053.

    Google Scholar 

  190. S. C. Choo, Numerical analysis of a forward-biased step-junction p-i-n diode, IEEE Trans. Electron Devices ED-18 (1971) 574–586.

    Google Scholar 

  191. S. C. Choo, Theory of a forward-biased diffused-junction p-i-n rectifier-Part 1: Exact numerical solution, IEEE Trans. Electron Devices ED-19 (1972) 954–966.

    Google Scholar 

  192. J. E. Sutherland and J. R. Hauser, A computer analysis of heterojunction and graded composition solar cells, IEEE Trans. Electron Devices ED-24 (1977) 363–372.

    Google Scholar 

  193. M. Hack and M. Shur, Computer simulation of amorphous silicon based p-i-n solar cells, IEEE Electron Device Lett. EDL-4 (1983) 140–143.

    CAS  Google Scholar 

  194. M. F. Lamorte and D. H. Abbott, AlGaAs/GaAs cascade solar cell computer modeling under high solar concentration, Solar Cells 9 (1983) 311–326.

    CAS  Google Scholar 

  195. M. F. Lamorte and D. H. Abbott, Influence of band gap on cascade solar cell efficiency, Solar Cells 10 (1983) 33–48.

    CAS  Google Scholar 

  196. R. Radojcic, A. E. Hill and M. J. Hampshire, A numerical model of a graded band gap CdSxTe1_x solar cell, Solar Cells 4 (1980) 109–120.

    Google Scholar 

  197. D. Laser and A. J. Bard, Semiconductor electrodes: VII. Digital simulation of charge injection and the establishment of the space charge region in the absence and presence of surface states, J. Electrochem. Soc. 123 (1976) 1828–1832.

    CAS  Google Scholar 

  198. D. Laser and A. J. Bard, Semiconductor electrodes: VIII. Digital simulation of open-circuit photopotentials, J. Electrochem. Soc. 123 (1976) 1833–1837.

    CAS  Google Scholar 

  199. D. Laser and A. J. Bard, Semiconductor electrodes: IX. Digital simulation of the relaxation of photogenerated free carriers and photocurrents, J. Electrochem. Soc. 123 (1976) 1837–1842.

    CAS  Google Scholar 

  200. D. Laser, Modes of charge transfer at an illuminated semiconductor electrode: A digital simulation, J. Electrochem. Soc. 126 (1979) 1011–1014.

    CAS  Google Scholar 

  201. N. M. Bogatov, L. I. Gromovoi, M. B. Zaks, and E. V. Lelyukh, A numerical solution of the one-dimensional boundary value problem of charge transfer in solar cells, Geliotekhnika 18 (1982) 7–14.

    Google Scholar 

  202. J. Newman, Numerical solution of coupled, ordinary differential equations, Ind. Eng. Chem. Fund. 7 (1968) 514–517.

    CAS  Google Scholar 

  203. R. White, C. M. Mohr, Jr., P. Fedkiw, and J. Newman, The fluid motion generated by a rotating disk: A comparison of solution techniques, Lawrence Berkeley Laboratory Report ,LBL-3910, November 1975.

    Google Scholar 

  204. R. E. White, Simultaneous reactions on a rotating-disk electrode ,Ph.D. thesis, University of California, Berkeley, March 1977, LBL-6094.

    Google Scholar 

  205. D. J. Leary, J. O. Barnes, and A. G. Jordan, Calculation of carrier concentration in poly crystalline films as a function of surface acceptor state density: Application for ZnO gas sensors, J. Electrochem. Soc. 129 (1982) 1382–1386.

    CAS  Google Scholar 

  206. J. A. Davis, R. O. James, and J. O. Leckie, Surface ionization and complexation at the oxide-water interface: I. Computation of electrical double layer properties in simple electrolytes, J. Colloid Interface Sci. 63 (1978) 480–499.

    CAS  Google Scholar 

  207. J. A. Davis and J. O. Leckie, Surface ionization and complexation at the oxide-water interface: II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions, J. Colloid Interface Sci. 67 (1978) 91–107.

    Google Scholar 

  208. J. A. Davis and J. O. Leckie, Surface ionization and complexation at the oxide-water interface: 3. Adsorption of ions, J. Colloid Interface Sci. 74 (1980) 32–43.

    CAS  Google Scholar 

  209. P. A. Iles, Evolution of silicon solar cell design, 9th IEEE Photovoltaic Specialists Conference ,Silver Springs, Maryland, 1972, pp. 1–5.

    Google Scholar 

  210. B. Parkinson, An evaluation of various configurations for photoelectrochemical photovoltaic solar cells, Solar Cells 6 (1982) 177–189.

    Google Scholar 

  211. M. E. Orazem and J. Newman, Mathematical modeling of liquid-junction photovoltaic cells: III. Optimization of cell configuration, J. Electrochem. Soc. 131 (1984) 2582–2589.

    CAS  Google Scholar 

  212. R. N. Fleck, D. N. Hanson and C. W. Tobias, Numerical evaluation of current distribution in electrochemical systems, Lawrence Berkeley Laboratory Report ,UCRL-11612, 1964.

    Google Scholar 

  213. C. Kasper, The theory of the potential and the technical practice of electrodeposition: I. The general problem and the cases of uniform flow, Trans. Electrochem. Soc. 77 (1940) 353–363.

    Google Scholar 

  214. C. Kasper, The theory of the potential and the technical practice of electrodeposition: II. Point-plane and line-plane systems, Trans. Electrochem. Soc. 77 (1940) 365–384.

    Google Scholar 

  215. C. Kasper, The theory of the potential and the technical practice of electrodeposition: III. Linear polarization on some line-plane systems, Trans. Electrochem. Soc. 78 (1940) 131–146.

    Google Scholar 

  216. C. Kasper, The theory of the potential and the technical practice of electrodeposition: IV. The flow between and to circular cylinders, Trans. Electrochem. Soc. 78 (1940) 147–161.

    Google Scholar 

  217. C. Kasper, The theory of the potential and the technical practice of electrodeposition: V. The two-dimensional rectangular enclosures, Trans. Electrochem. Soc. 82 (1942) 153–185.

    Google Scholar 

  218. H. F. Moulton, Current flow in rectangular conductors, Proc. London Math. Soc. (Ser. 2) 3 (1905) 104–110.

    Google Scholar 

  219. J. Newman, The fundamental principles of current distribution in electrochemical cells, in Electroanalytical Chemistry ,Ed. by A. J. Bard, Vol. 6 (1973), pp. 187–352.

    Google Scholar 

  220. M. E. Orazem and J. Newman, Primary current distribution and resistance of a slotted-electrode cell, J. Electrochem. Soc. 131 (1984) 2857–2861.

    CAS  Google Scholar 

  221. F. Bowman, Introduction to Elliptic Functions with Applications ,Wiley, New York, 1953.

    Google Scholar 

  222. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions ,Dover, New York, 1964.

    Google Scholar 

  223. D. Canfield and S. R. Morrison, Electrochemical storage cell based on polycrystalline silicon, Lawrence Berkeley Laboratory Report ,LBL-14639, 1982.

    Google Scholar 

  224. N. Muller and D. Cahen, Photoelectrochemical solar cells: Temperature control by cell design and its effects on the performance of cadmium chalcogenide-polysulfide systems, Solar Cells 9 (1983) 229–245.

    Google Scholar 

  225. N. L. Weaver, R. Singh, K. Rajeschwar, P. Singh, and J. DuBow, Economic analysis of photoelectrochemical cells, Solar Cells 3 (1981) 221–232.

    CAS  Google Scholar 

  226. P. Singh and J. D Leslie, Economic requirements for new materials for solar photovoltaic cells,. Solar Energy 24 (1980) 589–592.

    CAS  Google Scholar 

  227. F. M. Kamel and A. Muhlbauer, Impact of solar cell efficiency on the design of photovoltaic systems, Solar Cells 11 (1984) 269–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Orazem, M.E., Newman, J. (1986). Photoelectrochemical Devices for Solar Energy Conversion. In: White, R.E., Bockris, J.O., Conway, B.E. (eds) Modern Aspects of Electrochemistry. Modern Aspects of Electrochemistry, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1791-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1791-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9003-2

  • Online ISBN: 978-1-4613-1791-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics