Skip to main content
Book cover

Proteins pp 283–298Cite as

Structural Analysis of Proteins of the Nervous System

  • Chapter
  • 252 Accesses

Abstract

Proteins and peptides are essential to normal development, growth, and function of the nervous system1. The structural analysis of these proteins and peptides is complicated by the difficulty in obtaining sufficient material for complete, chemical characterization. It is difficult to obtain a homogeneous population of cells to serve as the starting material for protein isolation because the tissues of the nervous system, including brain, spinal cord, peripheral nerves, and sensory systems, are composed of multiple cell types2. Primary cultures of specific populations of cells3, 4 have been useful as models of neural development and function but are limited in their general application. Systems of cultured cells 5, 6, such as embryonic neurons, glia, neuroblastomas, or gliomas, that proliferate in culture also have limited roles as models of normal nervous system function. Therefore, upon purification land characterization of a protein of the nervous system, it is imperative to return to the whole organism to demonstrate the physiological function, anatomical distribution, and pharmacological regulation of the protein. In this way, the structural analysis of proteins of the nervous system is one part of a multidisclplinary approach to neuroscience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. T. Krieger, M. J. Brownstein, and J. B. Martin, “Brain Peptides,” John Wiley & Sons, New York (1983).

    Google Scholar 

  2. M. B. Carpenter, “Human Neuroanatomy,” The Williams & Wilkins Company, Baltimore (1976).

    Google Scholar 

  3. G. Lynch and P. Schubert, The use of in vitro brain slices for multidisciplinary studies of synaptic function, Ann. Rev. Neurosci 3: 1 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. H. K. Kimelberg, Primary astrocyte culture- a key to astrocyte function, Cell. Molec. Neurobiol 3: 1 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. G. H. Sato, A. B. Pardee, and D. A. Sirbasku, “Growth of cells in hormonally defined media,” volume IX, parts A and B, Cold Spring Harbor Press, New York (1982).

    Google Scholar 

  6. B. Hamprecht, Cell cultures as models for studying neural functions, Neuropsychopharmacol. Biol. Psychiat 8: 481 (1984).

    Article  CAS  Google Scholar 

  7. J. C. Eccles, The synapse: from electrical to chemical transmission, Ann. Rev. Neurosci 5: 325 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. S. Varon and G. G. Somjen, Neuron-glia interactions, Neurosci. Res. Prog. Bull 17: 1 (1979).

    CAS  Google Scholar 

  9. E. R. Kandel and J. H. Schwartz, “Principles of Neural Science,” Elsevier/North Holland, New York (1981).

    Google Scholar 

  10. K.-J. Chang and P. Cuatrecasas, Receptors and second messengers, in: “Brain Peptides,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., John Wiley & Sons, New York (1983).

    Google Scholar 

  11. S. G. Waxman and J. M. Ritchie, Organization of ion channels in the myelinated nerve fiber, Science 228: 1502 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. L. J. Van Eldik, J.G. Zendegui, D. R. Marshak, and D. M. Watterson, Calcium-binding proteins and the molecular basis of calcium action, Intl. Rev. Cytol 77: 1 (1982).

    Article  Google Scholar 

  13. E. M. Ross and A. G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem 49: 533 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. L. E. Hokin, Receptors and phosphoinositide-generated second messengers, Ann. Rev. Biochem. 54: 205 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. H. Theonen and D. Edgar, Neurotrophic Factors, Science 229: 238 (1985).

    Article  Google Scholar 

  16. B. A. Yanker and E. M. Shooter, The biology and mechanism of action of nerve growth factor, Ann. Rev. Biochem 51: 845 (1982).

    Article  Google Scholar 

  17. D. K. Berg, New neuronal growth factors, Ann. Rev. Neurosci 7: 149 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. J. Guenther, H. Nick, and D. Monard, A glia-derived neurite-promoting factor with protease inhibitory activity, EMBO J. 4: 1963 (1985).

    PubMed  CAS  Google Scholar 

  19. D. Kligman and D. R. Marshak, Purification and characterization of a neurite extension factor from bovine brain, Proc. Natl. Acad. Sci. USA, in press (1985).

    Google Scholar 

  20. R. James and R. A. Bradshaw, Polypeptide growth factors, Ann. Rev. Biochem 53: 259 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. S. A. Hendricks, J. Roth, S. Rishi, and K. L. Becker, Insulin in the nervous system, in: “Brain Peptides,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., John Wiley & Sons, New York (1983).

    Google Scholar 

  22. M. R. Hanley, Neuropeptides as mitogens, Nature 315: 14 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. J. M. Bishop, Cellular oncogenes and retroviruses, Ann. Rev. Biochem 52: 301 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. P. H. Duesberg, Activated proto-onc genes: sufficient or necessary for cancer?, Science 228: 669 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. M. Rosenberg and D. Cpurt, Regulatory sequences involved in the promotion and termination of RNA transcription, Ann. Rev. Genetics 13: 319 (1979).

    Article  CAS  Google Scholar 

  26. B. W. Moore, Brain-specific proteins: S100 protein, 14-3-2 protein, and glial fibrillary protein, in: “Advances in Neurochemistry,” B. W. Agranoff and M. H. Aperison, eds., Plenum Press, New York (1975).

    Google Scholar 

  27. R. J. Milner, F. E. Bloom, C. Lai, R. A. Lerner, and J. G. Sutcliffe, Brain-specific genes have identifier sequences in their introns, Proc. Natl. Acad. Sci. USA 81: 713 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. G. M. Edelman, Cell adhesion and the molecular processes of morphogenesis, Ann. Rev. Biochem 54: 135 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. J. T. Bonner, Chemical signals of social amoebea, Sci. Am 248: 114 (1983).

    Article  CAS  Google Scholar 

  30. P. Cappuccinelli and J. Ashworth, “Developments and differentiation in cellular slime molds,” Elsevier/North Holland, New York (1977).

    Google Scholar 

  31. E. P. Sena, D. Radin, J. Welch, and S. Fogel, Synchronous mating in yeasts, Meth. Cell Biol 11: 71 (1975).

    Article  CAS  Google Scholar 

  32. E. Loumaye, J. Thorner, and K. J. Catt, Yeast mating pheromone activates mammalian gonadotrophs:evolutionary conservation of a reproductive hormone?, Science 218: 1323 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. D. E. Koshland, Jr., Biochemistry of sensing and adaptation in a simple bacterial system, Ann. Rev. Biochem 50: 765 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. P. Sterling, Microcircuitry of the cat retina, Ann. Rev. Neurosci 6: 149 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. N. C. Brecha and H. J. Karten, Identification and localization of neuropeptides in the vertebrate retina, in: “Brain Peptides,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., John Wiley & Sons, New York (1983).

    Google Scholar 

  36. D. R. Marshak and B. A. Fraser, Structural analysis of brain peptides, in: “Brain Peptides,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., 2nd edition, John Wiley & Sons, New York, in press (1985).

    Google Scholar 

  37. K. A. Walsh, L. H. Ericsson, D. C. Parmelee, and K. Titani, Advances in protein sequencing, Ann. Rev. Biochem 50: 261 (1981).

    Article  PubMed  CAS  Google Scholar 

  38. M. W. Hunkapiller, J. E. Strickler, and K. J. Wilson, Contemporary methodology for protein structure determination, Science 226: 304 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. W. W. Vale, C. Rivier, J. Spiess, and J. Rivier, Corticotrophin releasing factor, in: “Brain Peptides,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., John Wiley & Sons, New York (1983).

    Google Scholar 

  40. J. Z. Kiss, E. Mezey, and L. Skirboll, Corticotropin releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy, Proc. Natl. Acad. Sci. USA 81: 1854 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. P. E. Sawchenko, L. W. Swanson, and W. W. Vale, Co-expression of corticotropin releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat, Proc. Natl. Acad. Sci. USA 81: 1883 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. W. W. Vale, J. Spiess, C. Rivier, and J. Rivier, Characterizatio of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin, Science 213: 1394 (1981).

    Article  PubMed  CAS  Google Scholar 

  43. K. Tatemoto and V. Mutt, Chemical determination of polypeptide hormones, Proc. Natl. Acad. Sci. USA 75: 4115 (1978).

    Article  PubMed  CAS  Google Scholar 

  44. S. E. Leeman and R. E. Carraway, Neurotensin discovery, isolation, characterization, synthesis, and possible physiological roles, Ann. N.Y. Acad. Sci 400: 1 (1982).

    Article  PubMed  CAS  Google Scholar 

  45. Y. P. Loh, M. J. Brownstein, and H. Gainer, Proteolysis in neuropeptide processing, Ann. Rev. Neurosci 7: 189 (1984).

    Article  PubMed  CAS  Google Scholar 

  46. J. W. Truman, Cell death in invertebrate nervous system, Ann. Rev. Neurosci 7: 171 (1984).

    Article  PubMed  CAS  Google Scholar 

  47. S. D. Meriney, D. B. Gray, and G. Pilar, Morphine-induced delay of normal cell death in the avian ciliary ganglion, Science 228: 1451 (1985).

    Article  PubMed  CAS  Google Scholar 

  48. N. M. Sherwood, S. A. Sower, D. R. Marshak, B. A, Fraser, and M. J. Brownstein, Primary structure of gonadotropin-releasing hormone from lamprey brain, J. Biol. Chem, submitted (1985).

    Google Scholar 

  49. W. S. Hancock, “Handbook of HPLC Separation of Amino Acids, Peptides, and Proteins,” volumes 1 and 2, CRC Press, Boca Raton, Florida (1984).

    Google Scholar 

  50. L. E. Eiden, The cell biology of peptidergic neurons: an overview, in: “Neuropeptides in Psychiatric and Neurological Disease,” C. B. Nemeroff, ed., The Johns Hopkins University Press, Baltimore (1986).

    Google Scholar 

  51. F. Wold, In vivo chemical modification of proteins (post-translational modification), Ann. Rev.Biochem. 50: 783 (1981).

    Article  PubMed  CAS  Google Scholar 

  52. G. Barany and R. B. Merrifield, Solid-phase peptide synthesis, in: “The Peptides: Analysis, Synthesis, Biology,” volume 2, E. Gross and J. Meienhofer, eds., Academic Press, New York (1979).

    Google Scholar 

  53. K. Itakura, J. J. Rossi, and R. B. Wallace, Synthesis and use of synthetic oligonucleotides, Ann. Rev. Biochem 53: 323 (1984).

    Article  PubMed  CAS  Google Scholar 

  54. M. J. Gait, “Oligonucleotide Synthesis: A Practical Approach,” IRL Press, Oxford (1984).

    Google Scholar 

  55. T. Maniatis, E. F. Fritsch, amd J. Sambrook, “Molecular Cloning: A Laboratory Manual,” Cold Spring Harbor Press, New York (1982).

    Google Scholar 

  56. J. Douglass, O. Civelli, and E. Herbert, Polyprotein gene expression: generation of diversity of neuroendocrine peptides, Ann. Rev. Biochem. 53: 665 (1984).

    Article  PubMed  CAS  Google Scholar 

  57. A. S. Liotta and D. T. Kriger, Pro-opiomelanocortin-related and other pituitary hormones in the central nervous system, in: “Brain Peptides,” D. T. Krieger, M. J. Brownstein, and J. B. Martin, eds., John Wiley & Sons, New York, (1983).

    Google Scholar 

  58. A. C. Nairn, H. C. Hemming, Jr., and P. Greengard, Protein kinases in the brain, Ann. Rev. Biochem 54: 931 (1985).

    Article  PubMed  CAS  Google Scholar 

  59. K. Titani, T. Sasagawa, L. H. Ericsson, S. Kumar, S. B. Smith, E. G. Krebs, and K. A. Walsh, Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3’, 5’-phosphate-dependent protein linase, Biochemistry 23: 4193 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. K. Takio, S. B. Smith, E. G. Krebs, K. A. Walsh, and K. Titani, Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3’, 5’-phosphate-dependent protein kinase, Biochemistry 23: 4200 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. C. B. Klee, T.H. Crouch, and P. G. Richman, Calmodulin, Ann. Rev. Biochem 49: 489 (1980).

    Article  PubMed  CAS  Google Scholar 

  62. T. Curran and J. I. Morgan, Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines, Science 229: 1265 (1985).

    Article  PubMed  CAS  Google Scholar 

  63. H. N. Eisen, “Immunology,” Harper & Row, Hagerstown, Maryland (1974).

    Google Scholar 

  64. A. F. Williams, Immunoglobulin-related domains for cell surface recognition, Nature 314: 579 (1985).

    Article  PubMed  CAS  Google Scholar 

  65. A. Fontana and P. J. Grob, Lymphokines and the brain, Springer Semin. Immunopathol 7: 375 (1984).

    Article  PubMed  CAS  Google Scholar 

  66. P. Cuatrecasas, Affinity chromatography, Ann. Rev.Biochem 43: 169 (1974).

    Article  PubMed  CAS  Google Scholar 

  67. D. R. Marshak, T. J. Lukas, C. M. Cohen, and D. M. Watterson, Immobilized drugs in protein and peptide isolation, in: “Calmodulin Antagonists and Cellular Physiology,” D. J. Hartshorne and H. Hidaka, eds., Academic Press, New York (1985).

    Google Scholar 

  68. M. W. Hunkapiller, E. Lujan, F. Ostrander, and L. E. Hood, Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis, Meth. Enzymol 91: 227 (1983).

    Article  PubMed  CAS  Google Scholar 

  69. K. E. Van Holde, “Physical Biochemistry,” Prentice-Hall, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  70. T. Kaiser, D. S. Lawrence, and S. E. Rokita, The chemical modification of enzymatic specificity, Ann. Rev. Biochem 54: 565 (1985).

    Article  PubMed  CAS  Google Scholar 

  71. G. K. Ackers and F. R. Smith, Effects of site-specific amino acid modification on protein interactions and biological function, Ann. Rev. Biochem 54: 597 (1985).

    Article  PubMed  CAS  Google Scholar 

  72. R. M. Myers, L. S. Lerman, and T. Maniatis, A general method for saturation mutagenesis of cloned DNA fragments, Science 229: 242 (1985).

    Article  PubMed  CAS  Google Scholar 

  73. D. Botstein and D. Shortle, Strategies and applications of in vitro mutagenesis, Science, 229: 1193 (1985).

    Article  PubMed  CAS  Google Scholar 

  74. H. Okayama and P. Berg, Bacteriophage lambda vector for transducing a cDNA clone library into mammalian cells, Molec. Cell Biol 5: 1136 (1985).

    PubMed  CAS  Google Scholar 

  75. R. A. Smith, M. J. Duncan, and D. T. Moir, Heterologous protein secretion from yeast, Science 229: 1219 (1985).

    Article  PubMed  CAS  Google Scholar 

  76. B. M. Conti-Tronconi, M. W. Hunkapiller, J. M. Lindstrom, and M. A. Raftery, Subunit structure of the acetyl choline receptor from Electrophorus electricus, Proc. Natl. Acad. Sci. USA 79: 6489 (1982).

    Article  PubMed  CAS  Google Scholar 

  77. B. M. Conti-Tronconi, C. M. Gotti, M. W. Hunkapiller, and M.A. Raftery, Mammalian muscle acetyl choline receptor: a supramolecular structure formed by four related proteins, Science 218: 1227 (1982).

    Article  PubMed  CAS  Google Scholar 

  78. R. J. Lefkowitz, J. M. Stadel, and M. G. Caron, Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization, Ann. Rev. Biochem 52: 159 (1983).

    Article  PubMed  CAS  Google Scholar 

  79. P. Cohen, A. Burchell, J. G. Foulkes, P. T. Cohen, T. C. Vanaman, and A. C. Nairn, Identification of the Ca++ dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase, FEBS Lett. 92: 287 (1978).

    Article  PubMed  CAS  Google Scholar 

  80. C. Picton, C. B. Klee, and P. Cohen, Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits, Eur. J. Biochem 111: 553 (1980).

    Article  PubMed  CAS  Google Scholar 

  81. E. M. Reimann, K. Titani, L. H. Ericsson, R. D. Wade, E. H. Fischer, and K. A. Walsh, Homology of the γ-subunit of phosphorylase b kinase with cAMP-dependent protein kinase, Biochemistry 23: 4185 (1984).

    Article  PubMed  CAS  Google Scholar 

  82. E. J. Nestler and P. Greengard, “Protein Phosphorylation in the Nervous System,” John Wiley & Sons, New York (1984).

    Google Scholar 

  83. P. C. Letourneau, Cell-to-substratum adhesion and guidance of axonal elongation, Dev. Biol 44: 92 (1975).

    Article  PubMed  CAS  Google Scholar 

  84. K. M. Yamada, Cell surface interactions with extracellular materials, Ann. Rev. Biochem 52: 761 (1983).

    Article  PubMed  CAS  Google Scholar 

  85. M. Clarke and J. A. Spudich, Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination, Ann. Rev. Biochem 46: 797 (1977).

    Article  PubMed  CAS  Google Scholar 

  86. J. B. Hurley, M. I. Simon, D. B. Teplow, J. D. Robishaw, and A. G. Gilman, Homologies between signal transducing G proteins and ras gene products, Science 226: 860 (1984).

    Article  PubMed  CAS  Google Scholar 

  87. S. H. Barondes, Lectins: their multiple endogenous cellular functions, Ann. Rev. Biochem 50: 207 (1981).

    Article  PubMed  CAS  Google Scholar 

  88. K. L. Valentino, J. Winter, and L. F. Reichardt, Applications of monoclonal antibodies to neuroscience research, Ann. Rev. Neurosci 8: 199 (1985).

    Article  PubMed  CAS  Google Scholar 

  89. M. Adinolfi and S. Brown, Monoclonal antibodies against brain antigens, Dev. Med. Child Neurol 25: 651 (1983).

    Article  PubMed  CAS  Google Scholar 

  90. R. A. Young and R. W. Davis, Efficient isolation of genes by using antibody probes, Proc. Natl. Acad. Sci. USA 80: 1194 (1983).

    Article  PubMed  CAS  Google Scholar 

  91. G. Rougon and D. R. Marshak, Structural and immunological characterization of the amino-terminal domain of mammalian neural cell adhesion molecules, J. Biol. Chem, submitted (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Marshak, D.R. (1987). Structural Analysis of Proteins of the Nervous System. In: L’Italien, J.J. (eds) Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1787-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1787-6_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9001-8

  • Online ISBN: 978-1-4613-1787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics