Proteins pp 251-268 | Cite as

Protein Sequence Determination and FAB Mass Spectrometry

  • Terry D. Lee
  • Kassu Legesse
  • Vickie Spayth


From the beginning, FAB (fast atom bombardment) mass spectrometry has held great promise for the structural analysis of peptides and proteins 1, 2. As the technique matures, it is evident that it will play an increasingly important role in primary structure determinations3. The purpose of this report is to define areas where FAB can be used to advantage for protein sequence determination with emphasis on the complimentary nature of this mass spectral technique with respect to more classical methods such as amino acid analysis and Edman microsequencing. The ability of FAB to analyze peptides directly without prior derivatization has facilitated the incorporation of this technique into protein sequencing strategies.


Glycerol Adduct Angiotensin Disulfide Tryptophan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Barber, R.S. Bordoli, D. Segwick, A.N. Tyler, and E.T. Whalley, Fast Atom Bombardment Mass Spectrometry of Bradykinin and Related Oligopeptides, Biomed. Mass Spectrom 8: 337 (1981).CrossRefGoogle Scholar
  2. 2.
    D.H. Williams, C.V. Bradley, S. Santikarn, and G. Bojesen, Fast-atom-bombardment mass spectrometry. A New technique for the determination of molecular weights and amino acid sequences of peptides, Biochem. J 201: 105 (1982).PubMedGoogle Scholar
  3. 3.
    T.D. Lee, Fast atom bombardment and secondary ion mass spectrometry of peptides and proteins, in: “Microcharacterization of Peptides and Proteins,” J.E. Shively, ed., The Humana Press, New Jersey, in press.Google Scholar
  4. 4.
    B. Sundqvist, P. Roepstorff, J. Fohlman, A. Hedin, P. Hakansson, I. Kamensky, M. Lindberg, M. Salehpour and G. Sawe, Molecular weight determinations of proteins by californium plasma desorption mass spectrometry, Science 226: 696 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    J.A. Yergey, R.J. Cotter, D. Heller and C. Fenselau, Resolution requirements for middle-molecule mass spectrometry, Anal. Chem 56: 2262 (1984).CrossRefGoogle Scholar
  6. 6.
    B.S. Rothman, D.H. Hawke, R.O. Brown, T.D. Lee, A.A. Dehghan, J.E. Shively and E. Mayeri, Isolation and primary structure of the califins, three biologically active, ELH-like peptides from the atrial gland of Aplysia californica, J. Biol. Chem., in press.Google Scholar
  7. 7.
    T.D. Lee, K. Legesse, D.H. Hawke, J.E. Shively, B.S. Rothman and E. Mayeri, Routine fast atom bombardment mass spectral analysis of high molecular weight peptides - atrial gland peptides from Aplysia californica, Bioc. Biop. Res. Commun., in press.Google Scholar
  8. 8.
    J.L. Witten, M.H. Schaffer, M. O’Shea, J.C. Cook, M.E. Hemling and K.L. Rinehart, Structures of two cockroach neuropeptides assigned by fast atom bombardment mass spectrometry, Bioc. Biop. Res. Commun 124: 350 (1984).CrossRefGoogle Scholar
  9. 9.
    B.W. Gibson and K. Biemann, Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences, Proc. Natl. Acad. Sci. USA, 81: 1956 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Wada, A. Hayashi, F. Masanori, I. Katakuse, T. Ichihara, H. Nakabushi, T. Matsuo, T. Sakurai and H. Matsuda, Characterization of a new fetal hemoglobin variant, Hb F Izumi, by molecular secondary ion mass spectrometry, Biochim. Biophys. Acta, 749: 244 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Rahbar, J. Louis, T.D. Lee and Y. Asmerom, Hemoglobin North Chicago: a new high affinity hemoglobin, Hemoglobin, in press.Google Scholar
  12. 12.
    S. Rahbar, T.D. Lee, J.A. Baker, L.T. Rabinowitz, Y. Asmerom and H.M. Ranney, Reverse phase high-performance liquid chromatography and secondary ion mass spectrometry. A strategy for identification of ten human hemoglobin variants, Hemoglobin, submitted.Google Scholar
  13. 13.
    H. Wacjman, O. Belkohdja and D. Labie, Hb Setif: A new αchain hemoglobin variant with substitution of the residue involved in a hydrogen bond between the subunits, FEBS Lett. 27: 298 (1972).CrossRefGoogle Scholar
  14. 14.
    W.F. Moo-Penn, M.H. Johnson, S.M. Wilson, B.J. Thierell and R.M. Schmidt, Hemoglobin Tarrant: A new hemoglobin variant in α1β1 contact region showing high oxygen affinity and reduced cooperativity, Biochim. Biophys. Acta 490: 443 (1977).PubMedGoogle Scholar
  15. 15.
    C.M. Ben-Avram, T.D. Lee, R.C. LeBoeuf and J.E. Shively, The primary structure of murine apolipoprotein A-II from inbred mouse strain BALB/c, J. Biol. Chem., submitted.Google Scholar
  16. 16.
    T. Sakurai, T. Matsuo, H. Matsuda, and I. Katakuse, PAAS 3: a computer program to determine probable sequence of peptides from mass spectrometric data, Biomed. Mass Spectrom 11: 396 (1984).CrossRefGoogle Scholar
  17. 17.
    T. D. Lee and V. Spayth, Computer assisted interpretation of fast atom bombardment mass spectra of peptides, 33rd Annual Conf. Mass Spectrom. Allied Topics, 266 (1985).Google Scholar
  18. 18.
    P. Roepstorff and J. Fohlman, Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biomed. Mass Spectrom 11: 601 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    E. DePauw, G. Pelzer, D.V. Dang and J. Marien, On the influence of hydrophobicity in the SIMS spectra of amino acids in glycerol matrix, Bioc. Biop. Res. Commun 123: 27 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Terry D. Lee
    • 1
  • Kassu Legesse
    • 1
  • Vickie Spayth
    • 1
  1. 1.Division of ImmunologyBeckman Research Institute of the City of HopeDuarteUSA

Personalised recommendations