Solar Cells and Solar Power Stations

  • Eduard W. Justi


From the earlier material concerning photovoltaic cells as direct energy converters of light to electricity (Chapter 4), the physical processes that take place in them, and the electrical engineering associated with their use (Chapter 5), it can be concluded that we are dealing with simple light-to-electricity converters that have no mechanically movable parts and do not require the use of chemicals. These cells work with an efficiency as high as 20%—a relatively high degree of efficiency —and it can be seen at once that the high concentration of silicon in the earth’s crust could permit the mass production of silicon, the preferred semiconductor. The single difficulty in this picture is the (present) investment cost which is around $5000/kWel, which is still somewhat too high as far as the terrestrial production of electricity from solar energy is concerned. The price of silicon solar cells currently in use would have to be reduced by a factor of 3–5 to allow a rapid and complete breakthrough in solar electricity. It is easy to see the direction in which development must proceed. Much of the present cost goes into the preparation of superpure perfect single crystals. In this direction, it seems that efforts in the direction of lowering cost have become asymptotic, so that future efforts to achieve a reduction in cost should be concentrated on the production of less perfect silicon crystals. It is probable that such material would have a somewhat lower efficiency of conversion, but this is acceptable so long as the reduction in cost of the starting material is greater than the reduction in efficiency.


Solar Cell Photovoltaic Cell Silicon Solar Cell Cadmium Sulfide European Economic Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1979 Photovoltaic Solar Energy Conference, April 23–26, (1979), Kongresshalle Berlin (West), organized by Commission of the European Communities and the IEEE.Google Scholar
  2. 2.
    Workshop Proc., Photov. Conv. Solar Energ. for Terr. Appl. ,Oct. 25–27, (1974), NSF-RAN 74-073.Google Scholar
  3. 3.
    Experimentalstudie zur Entwicklungsdefinition von terr. Solargeneratoren [Experimental studies on the Design and Development of Terrestrial Solar Energy Developments], AEG-Telefunken, Projekt des Bundesministerium für Forschung und Technologies, Bonn, Nr. 41885 A.Google Scholar
  4. 4.
    H. Fischer: Silicon solar cells from polycryst. material, Proc. 1977 Photov. Sol. En. Conf. ,Luxemburg, Sept. 27–30 (1977); Solar cells based on nonsingle cryst. silicon, in: J. Treusch (ed.), Festkörperprobleme 18:19-32, F. Vieweg and Sohn Verlagsgesellschaft, Braunsweig (1978).Google Scholar
  5. 5.
    B. A. Authier, DOS 25 08 83: Neuartige Siliziumkristalle and Verfahren zu ihrer Herstellung. [Novel kinds of Si crystals and processes for their productions]. Anm.: Wacker-Chemitronic; U.S. Appl. Ser. No. 652 359, Polycryst. Silicon with Columnar Structure, in: J. Treusch (ed.), Festkörperprobleme 18:1 -17, F. Vieweg and Sohn Verlagsgesellschaf, Braunsweig, (1978).Google Scholar
  6. 6.
    H. J. Hovel: Semiconductors and Semimetals ,Vol. XI, Solar Cells ,Academic Press, New York (1975).Google Scholar
  7. 7.
    H. Fischer and W. Pschunder: Low cost solar cells based on a large area unconventional silicon, Conf. Rec. 12th PVSC Nov. 15–18 (1976), Baton Rouge, Louisiana.Google Scholar
  8. 8.
    S.I. Soclov and P. A. Iles: Grain boundary and impurity effects in low cost silicon solar cells, Conf. Rec. 11th PVSC, May 6–8, (1975), Scottsdale, Arizona.Google Scholar
  9. 9.
    W. Shockley:Electrons and Holes in Semiconductors ,D. Van Nostrand Company. Toronto (1950).Google Scholar
  10. 10.
    H. Fischer and W. Pschunder: Impact of materiel and junction properties on silicon solar cell performance, Conf. Rec. 11th PVSC, May 6–8 (1975), Scottsdale, Arizona.Google Scholar
  11. 11.
    T. H. di Stefano and J. J. Cuomo: Reduction of grain boundary recombination in polycrystalline silicon solar cells, Appl. Phys. Lett. 30(7):351 (1977).CrossRefGoogle Scholar
  12. 12.
    H. Fischer and W. Pschunder: Low cost solar cells based on large area unconventional silicon, Techn. Ber. Nr. 5/76 der AEG-Telefunken, Fachbereich Halbleiter, Heilbronn, December 10, (1976).Google Scholar
  13. 13.
    S. Martinuzzi, A. Mostavan, F. Cabane-Brouty, J. Oualid, and J. Gervais: Properties and efficiency of Cu2S-CdS sprayed layer photocells, Proc. 2nd Int. Sol. Forum, Hamburg (1978), Vol. 1, p. 385, Deutsche Gesellschaft für Sonnenenergie, Munich (1978).Google Scholar
  14. 14.
    F. Pfisterer and W. H. Bloss: Cu2S-CdS Dünnschicht-Solarzellen [Thin-layer solar cells], Ibid, p. 369.Google Scholar
  15. 15.
    L. Partain and M. Sayed: Accelerated life test of CdS-Cu2S solar cells, NSF Grant No. G 134 872, May (1973).Google Scholar
  16. 16.
    J. A. Hedvall: Einführung in die Festkörperchemie [Introduction to Solid State Chemistry] ,(Sammlung Die Wissenschaft ,Vol. 106), Braunschweig (1952).Google Scholar
  17. 17.
    F. Shirland: 3rd Conf. On Large Scale Energy Converison for Terrestrial Use, Wilmington, Delaware, Oct. (1971).Google Scholar
  18. 18.
    F. Pfisterer, G. H. Hewig and W. H. Bloss: Conf. Rec. 11th IEEE Photov. Spec. Conf., Scottsdale, Arizona (1975), p. 460.Google Scholar
  19. 19.
    L. R. Shiozawa, F. Augustine, G. A. Sullivan, J. M. Smith, and W. R. Cook: Jr. Clevite Corp. Final Report, Contract AF 33(615)-5224 (1969).Google Scholar
  20. 20.
    K. Bogus and S. Mattes: Conf. Rec.9th PVSC, Silver Springs, Maryland (1972), p. 106.Google Scholar
  21. 21.
    V. A. Baum, R. R. Apparase, and B. A. Garf: Solar Energy 1:6 (1957).CrossRefGoogle Scholar
  22. 22.
    A. B. Meinel and M. P. Meinel: Applied Solar Energy ,Addison-Wesley, Manila, Philippines (1977).Google Scholar
  23. 23.
    R. Köhne: Proc. d. 1. Deutschen Sonnenforums [German Solar Energy Meeting], Hamburg (1977), Vol. 2, p. 283, Deutsche Gesellschaft für Sonnenenergie, Munich (1978).Google Scholar
  24. 24.
    J. D. Walton, S. H. Bomsar, C. T. Brown, and N. E. Poulos: Rev. Int. Héliotechnique (1978), 1st Semester, p. 29.Google Scholar
  25. 25.
    W. H. Hofmann and J. Gretz: Proc. 2. Int. Solar Forum ,Hamburg (1978), Vol. 1, p. 185.Google Scholar
  26. 26.
    J. D. Walton and J. N. Harris: Development of a ceramic receiver for a Brayton cycle solar electr. power plant, Prepr. COMPLES Conf. Tunis (1977).Google Scholar
  27. 27.
    G. Francia: Solar Energy 12(1):51 (1968).CrossRefGoogle Scholar
  28. 28.
    G. Francia: The University of Genova solar furnace, Presented at the NSF Internat. Seminar on Large Scale Solar Energy Test Facilities, New Mexico State University, Las Cruces, Nov. 18–20, (1974).Google Scholar
  29. 29.
    G. Francia: The solar plant of S. Ilario-Genova-Nervi, Ricerca 36(8): 779 (1966).Google Scholar
  30. 30.
    G. Francia: A new collector for solar radiant energy, Proc. Un. Nat. Conf. on New Sources of Energy, Rome (1961).Google Scholar
  31. 31.
    O. Barra, E. P. Caratelli, M. Conti, M. El Sawi and R. Visentin: Design problems of the hydraulic network in a linear collector power plant, Proc. 2nd Int. Solar Forum ,Hamburg (1978), Vol. 1, p. 195.Google Scholar
  32. 32.
    F. K. Boese, W. Jansing, S. Kostrzewa, and D. Stahl: Solar central receiver power plant with sodium heat transfer, Ibid. ,p. 209.Google Scholar
  33. 33.
    K. S. Shishodia: A 5-10 kW solar energy power plant, Ibid. ,p. 265.Google Scholar
  34. 34.
    A. DeGezelle:Ibid., p. 151.Google Scholar
  35. 35.
    M. Perrot and M. Touchais: l2’Energie solaire et son avenir industriel. Rev. Generate de Thermique ,Sept. (1964).Google Scholar
  36. 36.
    A. Buch to E. Justi: Personal communication, January (1979).Google Scholar
  37. 37.
    J. J. Hatzikakidis: From the history of solar applications: Archimedes2’ predecessors and successors, Solar Energy 1 (2,3) (1960).Google Scholar
  38. 37.
    J. J. Hatzikakidis: From the history of solar applications: Archimedes2’ predecessors and successors, Solar Energy 1 (2,3) (1960).Google Scholar
  39. 38.
    P. E. Glaser: Method and apparatus for converting solar radiation to electrical power, US Patent 3,781,647, Dec. 25 (1973).Google Scholar
  40. 39.
    P. E. Glaser, O. E. Maynard, J. Mackovciak, and E. L. Ralph: Feasibility study of a satellite solar power station, NASA CR-2357, NTIS N74-17784 (1974).Google Scholar
  41. 40.
    P. E. Glaser: Physics Today 30 (2):30–38 (1977).CrossRefGoogle Scholar
  42. 41.
    D. Kassing: Solar power satellites-A review of the state of research, in: Solar Energy 2’82 ,Proceedings of a summer school held at Igls (Austria) on July 28-August 6 (1982), pp. 191–197.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Eduard W. Justi
    • 1
  1. 1.Technical UniversityBraunschweigFederal Republic of Germany

Personalised recommendations