Methods for Body Surface Electrocardiographic Mapping

  • David M. Mirvis
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 82)

Abstract

To meet the goals of body surface electrocardiographic mapping, a series of devices and techniques have been developed. These include electrode systems, data acquisition procedures, display formats, and qualitative and quantitative data analysis routines. Each of these will be described and evaluated in this chapter.

Keywords

Ischemia Respiration Cardiol Sine Diol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arisi G, Macchi E, Baruffi S, Spaggiari S, Taccardi B: Potential fields on the ventricular surface of the exposed dog heart during normal excitation. Circ Res 1983;52:706–715.PubMedGoogle Scholar
  2. 2.
    Barr RC, Spach MS: Construction and interpretation of body surface maps. Prog Cardiovasc Dis 1983;26:33–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamada K, Toyama J, Sugenoya J, Wada M, Sugiyama S: Body surface isopotential maps. Clinical application to the diagnosis of myocardial infarction. Jpn Heart J 1978;19:28–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Barr RC, Spach MS, Herman-Giddens GS: Selection of the number and positions of measuring locations for electrocardiography. IEEE Trans Biomed Eng 1971;18:125–138.CrossRefGoogle Scholar
  5. 5.
    Spach MS, Barr RC: Physiological correlates and clinical application of isopotential surface maps. In: Hoffman I, Hamby RI and Glassman E, eds. Vectorcardiography 2. Amsterdam: North Holland Publishing. 1971:131–141.Google Scholar
  6. 6.
    Lux RL, Smith CR, Wyatt RF, Abildskov JA: Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans Biomed Eng 1978;25:270–276.PubMedCrossRefGoogle Scholar
  7. 7.
    Lux RL, Burgess MJ, Wyatt RF, Evans AK, Vincent GM, Abildskov JA: Clinically practical lead systems for improved electrocardiography: Comparison with precordial grids and conventional lead systems. Circulation 1979;59:356–363.PubMedGoogle Scholar
  8. 8.
    Green LS, Lux RL, Stilli D, Haws CW, Taccardi B: Fine detail in body surface potential maps: Accuracy of maps using a limited lead array and spatial and temporal data representation. J Electrocardiol 1987;20:1–6.CrossRefGoogle Scholar
  9. 9.
    Kornreich F: The missing waveform information in the orthogonal electrocardiogram (Frank leads). 1. Where and how can this missing waveform be retrieved? Circulation 1973;48:984–995.PubMedGoogle Scholar
  10. 10.
    Nelson CV, Gastonguay PR, Wilkinson AF, Voukydis PC: A lead system for direction and magnitude of the heart vector. In: Hoffman I, Hamby RI, and Glassman E, eds. Vectorcardiography 2. Amsterdam: North Holland Publishing. 1971:85–97.Google Scholar
  11. 11.
    Trost RF, Arthur RM, Geselowitz DB, Briller SA: A dipole plus quadripole lead system for human electrocardiography. J Electrocardiol 1977;10:27–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Horan LG, Hand RC, Flowers NC, Johnson JC, Sridharan MR: The influence of electrode placement in the reconstruction and analysis of body surface potential maps from limited thoracic arrays. J Electrocardiol 1980;13:311–322.PubMedCrossRefGoogle Scholar
  13. 13.
    Brody DA: The inverse determination of simple generator configurations from equivalent dipole and multipole information. IEEE Trans Biomed Eng 1968;15:106–110.PubMedCrossRefGoogle Scholar
  14. 14.
    Eddlemon CO, Ruesta VJ, Horan LG, Brody DA: Distribution of heart potentials on the body surface in five normal young men. Am J Cardiol 1968;21:861–870.CrossRefGoogle Scholar
  15. 15.
    Taccardi B: Distribution of heart potentials on dog’s thoracic surface. Circ Res 1962;11:862–869.PubMedGoogle Scholar
  16. 16.
    Pipberger HV, Arzbaecher RC, Berson AS, Briller SA, Brody DA, Flowers NC, Geselowitz DB, Lepeschkin E, Oliver C, Schmitt OH, Spach MS: Recommendations for standardization of leads and specifications for instruments in electrocardiography and vectorcardiography. Circulation 1975;52:11–31.Google Scholar
  17. 17.
    Bragg-Remschel DA, Anderson CM, Winkle RA: Frequency response characteristics of ambulatory ECG monitoring systems and their implication for ST segment analysis. Am Heart J 1982;103:20–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor DI, Vincent R: Artefactual ST segment abnormalities due to electrocardiograph design. Br Heart J 1985;54:121–128.CrossRefGoogle Scholar
  19. 19.
    Nichols TL, Mirvis DM: Frequency content of the electrocardiogram. Spatial features and effects of myocardial infarction. J Electrocardiol 1985;18:185–194.PubMedCrossRefGoogle Scholar
  20. 20.
    Flowers NC, Horan LG, Tolleson WJ, Thomas JR: Localization of the site of myocardial scarring in man by high-frequency components. Circulation 1967;40:927–933.Google Scholar
  21. 21.
    Barr RC, Spach MS: Sampling rates required for digital recording of intracellular and extracellular cardiac potentials. Circulation 1977;55:4048.Google Scholar
  22. 22.
    Wyatt RC, Lux RL: Application of multiplexing techniques in the collection of body surface maps from single complexes. Adv Cardiol 1974;10:26–32.Google Scholar
  23. 23.
    Brandon CW, Brody DA: A hardware trigger for temporal indexing of the electrocardiographic signal. Comput Biomed Res 1970;3: 47–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Blanchard SM, Barr RC: Comparison of methods for adaptive sampling of cardiac electrograms and electrocardiograms. Med Biol Eng Comput 1985;23:377–386.CrossRefGoogle Scholar
  25. 25.
    Brody DA, Woolsey MD, Arzbaecher RC: Application of computer techniques to the detection and analysis of spontaneous P-wave variations. Circulation 1967;36:359–371.PubMedGoogle Scholar
  26. 26.
    Spach MS, Barr RC, Warren RB, Benson DW, Walston A, Edwards SB: Isopotential body surface mapping in subjects of all ages: Emphasis on low-level potentials with analysis of the method. Circulation 1979;59:805–821.PubMedGoogle Scholar
  27. 27.
    Miller WT, Spach MS, Warren RB: Total body surface potential mapping during exercise: QRST-Wave changes in normal young adults. Circulation 1980;62:632–645.PubMedGoogle Scholar
  28. 28.
    Meyer CR, Keiser HN: Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation technique. Comp Biomed Res 1977;10:459–470.CrossRefGoogle Scholar
  29. 29.
    Robinson A, Sale R, Morrison J: Elements of Cartography. New York: J. Wiley. 1978:217–242.Google Scholar
  30. 30.
    Monro DM, Guardo RAL, Bourdillon RJ, Tinker J: A Fourier technique for simultaneous electrocaidiographic surface mapping. Cardiovasc Res 1974;8:688–700.PubMedCrossRefGoogle Scholar
  31. 31.
    Pham-Huy H, Gulrajani RM, Roberge FA, Nadeau RA, Mailloux GE, Savard P: A comparative evaluation of three different approaches for detecting body surface isopotential map abnormalities in patients with myocardial infarction. J Electrocardiol 1981;14:43–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Montague TJ, Smith ER, Cameron DA, Rautaharju PM, Klassen GA, Felmington CS, Horacek BM: Isointegral analysis of body surface maps. Surface distribution and temporal variability in normal subjects. Circulation 1981;63:1166–1172.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson FN, MacLeod AG, Barker PS, Johnston FD: The determination and the significance of the areas of the ventricular deflections of the electrocardiogram. Am Heart J 1934;10:46–61.CrossRefGoogle Scholar
  34. 34.
    Taccardi B, De Ambroggi L, Viganotti C: Body-surface mapping of heart potential. In: Nelson CV, Geselowitz DB, eds. Theoretical Basis of Electrocardiography. Oxford: Clarendon Press. 1976:436–466.Google Scholar
  35. 35.
    Ideka K, Kubota I, Igarashi A, Yamaki M, Tsuiki K, Yasui S: Detection of local abnormalities in ventricular activation sequence by body surface isochrone mapping in patients with previous myocardial infarction. Circulation 1985; 72:801–809.CrossRefGoogle Scholar
  36. 36.
    Mirvis DM, Ingram L, Holly MK, Wilson JL, Ramanathan KB: Electrocardiographic effects of experimental nontransmural myocardial infarction. Circulation 1985;71:1206–1214.PubMedCrossRefGoogle Scholar
  37. 37.
    Mirvis DM: Spatial variation of QT intervals in normal persons and patients with acute myocardial infarction. J Am Coll Cardiol 1985;5:625–631.PubMedCrossRefGoogle Scholar
  38. 38.
    Spach MS, Barr RC, Lanning CF, Tucek PC: Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation 1977;55:268–278.PubMedGoogle Scholar
  39. 39.
    McLaughlin VW, Flowers NC, Horan LG, Killam HA: Surface potential contributions from discrete elements of ventricular wall. Am J Cardiol 1974;34:302–308.PubMedCrossRefGoogle Scholar
  40. 40.
    Mirvis DM, Gordey RL: Electrocardiographic effects of myocardial ischemia induced by atrial pacing in dogs with coronary stenosis. I. Re-polarization changes with progressive left circumflex coronary artery narrowing. J Am Coll Cardiol 1983;1:1090–1098.PubMedCrossRefGoogle Scholar
  41. 41.
    Flowers NC, Horan LG, Johnson JC: Anterior infarctional changes occurring during mid and late ventricular activation detectable by surface mapping techniques. Circulation 1976;54:906–913.Google Scholar
  42. 42.
    Mirvis DM: Body surface distributions of re-polarization potentials after acute myocardial infarction. II. Relationship between isopotential mapping and ST-segment potential summation methods. Circulation 1981;63:623–631.PubMedCrossRefGoogle Scholar
  43. 43.
    Horan LG, Flowers NC: The principle of waveform correlation in electrocardiographic research. J Electrocardiol 1968;1:43–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Gabor D and Nelson CV: Determination of the resultant dipole of the heart from measurements on the body surface. J Appl Phys 1954;25:413–416.CrossRefGoogle Scholar
  45. 45.
    Arthur RM, Geselowitz DB, Briller SA, Trost RF: The path of the electrical center of the human heart determined from surface electrocardiograms. J Electrocardiol 1971;4: 29–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Gulrajani RM, Roberge FA, Savard P: Moving dipole inverse ECG and EEG solutions. IEEE Trans Biomed Eng 1984;31:903–910.PubMedCrossRefGoogle Scholar
  47. 47.
    Savard P, Ackaoui A, Gulrajani RA, Nadeau FA, Roberge FA, Guardo R, Dube B: Localization of cardiac ectopic activity in man by a single moving dipole. J Electrocardiol 1985;18: 211–222.PubMedCrossRefGoogle Scholar
  48. 48.
    Salu Y, Bischof C, Pandian N: A noninvasive method for locating a cardiac dipolar source in humans. J Electrocardiol 1982;15:249–258.PubMedCrossRefGoogle Scholar
  49. 49.
    Mirvis DM, Holbrook MA: Body surface distributions of repolarization potentials after acute myocardial infarction. III. Dipole ranging in normal subjects and in patients with acute myocardial infarction. J Electrocardiol 1981;14: 387–398.PubMedCrossRefGoogle Scholar
  50. 50.
    Gulrajani RM, Pham-Huy H, Nadeau RA, Savard P, deGuise J, Primeau RE, Roberge FA: Application of the single moving dipole inverse solution to the study of the Wolff-ParkinsonWhite syndrome in man. J Electrocardiol 1984; 17:271–288.PubMedCrossRefGoogle Scholar
  51. 51.
    Holt JH, Barnard ACL, Lynn MS: A study of the human heart as a multiple dipole electrical source. II. Diagnosis and quantitation of left ventricular hypertrophy. Circulation 1969;40: 697–710.PubMedGoogle Scholar
  52. 52.
    Barnard ACL, Merrill AJ, Holt JH, Kramer JO: Progress in the evaluation of multiple dipole electrocardiography in a clinical environment. In: Hoffman I, Hamby RI, and Glassman E, eds. Vectorcardiography 2. Amsterdam: North Holland Publishing. 1971:404–411.Google Scholar
  53. 53.
    Horan LG, Hand RC, Flowers NC, Johnson JC: The multipolar content of the human electrocardiogram. Ann Biomed Eng 1976;4:280–301.PubMedCrossRefGoogle Scholar
  54. 54.
    Barr RC, Spach MS: Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ Res 1978;42:661–675.PubMedGoogle Scholar
  55. 55.
    Yamashita Y, Takahashi T: Use of the finite element method to determine epicardial from body surface potentials under a realistic torso model. IEEE Trans Biomed Eng 1984;31:611–621.PubMedCrossRefGoogle Scholar
  56. 56.
    Colli-Franzone P, Guerri L, Tentoni S, Viganotti C, Baruffi S, Spaggiari S, Taccardi B: A mathematical procedure for solving the inverse potential problem in electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math Biosci 1985;77:353–396.CrossRefGoogle Scholar
  57. 57.
    Choi J, Pilkington TC: Effects of geometrical uncertainties on electrocardiography. IEEE Trans Biomed Eng 1981;28:325–334.PubMedCrossRefGoogle Scholar
  58. 58.
    Spach MS, Barr RC, Benson DW, Walston A, Warren RB, Edwards SB: Body surface low-level potentials during ventricular repolarization with analysis of the ST segment. Variability in normal subjects. Circulation 1979;59:822–836.PubMedGoogle Scholar
  59. 59.
    Chen CH: Statistical Pattern Recognition. Rochelle Park, NJ: Hayden Publishing. 1973:36–39.Google Scholar
  60. 60.
    Lux RL, Evans AK, Burgess MJ, Wyatt RF, Abildskov JA. Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial compression. Circ Res 1981;49:186–196.PubMedGoogle Scholar
  61. 61.
    Evans AK, Lux RL, Burgess MJ, Wyatt RF, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. II. Temporal compression. Circ Res 1981;49:197–203.PubMedGoogle Scholar
  62. 62.
    Lux RL, Haws CW, Green LS, Burgess MJ, Abildskov JA: Noninvasive assessment of coronary artery disease extent through body surface potential mapping. Circulation 1985;72(Suppl. II):II-213.Google Scholar
  63. 63.
    Nichols TL, Lawson MA, Mirvis DM: Determination of cardiac equivalent generator properties using a numerical expansion method. J. Electrocardiol 1987;20:352–356.PubMedCrossRefGoogle Scholar
  64. 64.
    De Ambroggi L, Bertoni T, Locati E, StrambaBadiale M, Schwartz PJ: Mapping of body surface potentials in patients with the idiopathic long QT syndrome. Circulation 1986;74:1334–1345.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1998

Authors and Affiliations

  • David M. Mirvis

There are no affiliations available

Personalised recommendations