Skip to main content

Future Prospects and Applications

  • Chapter
  • 46 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 82))

Abstract

The mechanical contraction of heart muscle fibers is triggered by a propagating electrochemical perturbation, the excitatory process. The propagation of excitation is brought about by the flow of electric currents. In the extracellular space, the currents flow from those myocardial areas where the cell membranes are more polarized toward the regions where they are less polarized or inversely polarized (outside negative relative to the inside), as occurs in fully excited fibers. Repolarization is also accompanied by the generation of electric currents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colli-Franzone P, Guerri L, Viganotti C, Mac-chi E, Baruffi S, Spaggiari S, Taccardi B: Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ Res 1982; 51: 330–364.

    PubMed  CAS  Google Scholar 

  2. Taccardi B: La distribution spatiale des potentiels cardiaques. Acta Cardiol 1968; 13: 173–187.

    Google Scholar 

  3. Taccardi B, Marchetti G: The distribution of heart potentials on the body surface and in artificial conducting media. In: Taccardi B, Marchetti G, eds. Electrophysiology of the Heart. Oxford: Pergamon Press. 1965: 257–280.

    Google Scholar 

  4. Taccardi B, Musso E, De Ambroggi L: Current and potential distribution around an isolated dog heart. In: Rijlant P, ed. Proc Satellite Symp of the XXV Internat Congr Physiol Sc “The Electrical Field of the Heart.” Bruxelles: Presses-Academiques Europeennes. 1972: 99–102.

    Google Scholar 

  5. Taccardi B: Multipolar distribution of cardiac potentials in body surface mapping. In: Manning GW, Ahuja SP, eds. Electrical Activity of the Heart. Springfield: C C Thomas. 1969: 37–52.

    Google Scholar 

  6. Taccardi B: Distribution of heart potentials on dog’s thoracic surface. Circ Res 1962; 11: 862–869.

    PubMed  CAS  Google Scholar 

  7. Taccardi B: Distribution of heart potentials on the thoracic surface of normal human subjects. Circ Res 1963; 12: 341–352.

    PubMed  CAS  Google Scholar 

  8. Spach MS, Barr RC, Blumenschein SD, Boineau JP: Clinical implications of isopotential surface maps. Ann Intern Med 1968; 69: 919–928.

    PubMed  CAS  Google Scholar 

  9. Wilson FN, Macleod AB, Barker PS: The distribution of the action currents produced by heart muscle and other excitable tissues immersed in extensive conducting media. J Gen Physiol 1933; 16: 423–456.

    Article  PubMed  CAS  Google Scholar 

  10. Wilson FN, Johnston FD, Rosenbaum FF, Erlanger H, Kossmann CE, Hecht H, Cotrim N, Menezes de Oliveria R, Scarsi R, Barker PS: The precordial electrocardiogram. Am Heart J 1944; 27: 19–85.

    Article  Google Scholar 

  11. Corbin LV, Scher AM: The canine heart as an electrocardiographic generator. Dependence on cardiac cell orientation. Circ Res 1977; 41: 58–67.

    PubMed  Google Scholar 

  12. Ershler, PR, Lux RL, Steadman BW: A 128 lead online intraoperative mapping system. Proc Eighth Ann Conf of IEEE/Engineering in Med and Biol Soc, 1986: 1289–1291.

    Google Scholar 

  13. Parson I, Downar E: Clinical instrumentation for the intraoperative mapping of ventricular arrhythmias. PACE 1984; 7: 683–692.

    PubMed  CAS  Google Scholar 

  14. de Bakker JM, Janse MJ, Van Capelle FJ, Durrer D: Endocardial mapping by simultaneous recording of endocardial electrograms during cardiac surgery for ventricular aneurysm. J Am Coll Cardiol 1983; 2: 947–953.

    Article  PubMed  Google Scholar 

  15. Taccardi B, Arisi G, Baruffi S, Spaggiari S: Quick location of starting site of ventricular arrhythmias with multi-electrode intracavitary catheter. Eur Heart J 1984: 5: 38.

    Google Scholar 

  16. Taccardi B, Arisi G, Macchi E, Baruffi S, Spaggiari S: A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation 1987; 75: 272–281.

    Article  PubMed  CAS  Google Scholar 

  17. Stilli D, Musso E, Macchi E, Manca C, Dei Cas L, Vasini L, Taccardi B: Body surface potential mapping in ischemic patients with normal resting ECG. Can J Cardiol 1986;Suppl A:107A–112A.

    PubMed  CAS  Google Scholar 

  18. Musso E, Stilli D, Macchi E, Regoliosi G, Brambilla C, Francescon P, Bo M, Rolli A, Botti G, Taccardi B: Body surface maps in left bundle branch block uncomplicated or complicated by myocardial infarction, left ventricular hypertrophy or myocardial ischemia. J Electrocardiol 1987; 20: 1–20.

    Article  PubMed  CAS  Google Scholar 

  19. Flowers NC, Horan LG, Sohi GS, Hand RC, Johnson JC: New evidence for inferoposterior myocardial infarction on surface potential maps. Am J Cardiol 1976; 38: 576–581.

    Article  PubMed  CAS  Google Scholar 

  20. Tonooka I, Kubota I, Watanabe Y, Tsuiki K, Yasui S: Isointegral analysis of body surface maps for the assessment of location and size of myocardial infarction. Am J Cardiol 1983; 52: 1174–1180.

    Article  PubMed  CAS  Google Scholar 

  21. Lux RL, Evans AK, Burgess MJ, Wyatt RW, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial Compression. Circ Res 1981; 49: 186–196.

    PubMed  CAS  Google Scholar 

  22. Evans AK, Lux RL, Burgess MJ, Wyatt RF, Abildskov JA: Redundancy reduction for improved display and analysis of body surface potential maps. II. Temporal compression. Circ Res 1981; 49: 197–203.

    PubMed  CAS  Google Scholar 

  23. Haws CW, Green LS, Lux RL, Vincent GM, Burgess MJ: Body surface map detection of coronary artery disease in patients with normal electrocardiograms. Clin Res 1985; 33: 192A.

    Google Scholar 

  24. Lux RL, Haws CW, Green LS, Burgess MJ, Abildskov. JA: Noninvasive assessment of coronary artery disease extent through body surface potential mapping. Circulation 1985; 72 (Suppl II): II - 213.

    Google Scholar 

  25. De Ambroggi L, Bertoni T, Locati E, StrambaBadiale M, Schwartz PJ: Mapping of body surface potentials in patients with the idiopathic long QT syndrome. Circulation 1986; 74: 1334–1345.

    Article  PubMed  Google Scholar 

  26. Lux RL, Burgess MJ, Wyatt RF, Evans AK, Vincent GM, Abildskov JA: Clinically practical lead system for improved electrocardiography: Comparison with precordial grids and conventional lead systems. Circulation 1979; 59: 356–363.

    PubMed  CAS  Google Scholar 

  27. Helmholtz H: Uber einige gesetze der vertheilung elektrischer strome in korperlischen leitern, mit anwendung auf die thierisch elekrischen versuchen. Ann Physiol Chem 1853; 29: 222.

    Google Scholar 

  28. Cuppen JJM, van Oosterom A: Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans Biomed Eng 1984; 31: 652–659.

    Article  PubMed  CAS  Google Scholar 

  29. Barr RC, Spach MS: Inverse calcuation of QRST epicardial potentials from body surface potential distributions for normal end ectopic beats in the intact dog. Circ Res 1978; 42: 661–675.

    PubMed  CAS  Google Scholar 

  30. Colli-Franzone P, Guerri L, Tentoni S, Viganotti C, Baruffi S, Spaggiari S, Taccardi B: A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math Biosci 1985; 77: 353–396.

    Article  Google Scholar 

  31. Rudy Y, Messinger-Rapport BJ: Volume conductor effects and the use of regularization techniques in the inverse recovery of epicardial potentials. Proceed of the Frontiers of Engineering and Computing in Health Care IEEE/EMBS Eighth Annual Conference. 1986: 366–370.

    Google Scholar 

  32. Ganapathy N, Clark JW, Wilson OB, Giles W: Forward and inverse potential field solutions for cardiac strands of cylindrical geometry. IEEE Trans Biomed Eng 1985; 32: 566–577.

    Article  PubMed  CAS  Google Scholar 

  33. Barr RC, Dipersio DA: A prototype inverse solution in one dimension using a membrane modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential

    Google Scholar 

  34. Sheffer DB, Price TE, Loughry CW, Bolyeard BL, Morek WM, Varga RS: Validity and reliability of biostereometric measurements of the human female breast. Ann Biomed Eng 1986; 14: 1–14.

    Article  PubMed  CAS  Google Scholar 

  35. Murai T, Kagawa Y: Electrical impedance computed tomography based on a finite element model. IEEE Trans Biomed Eng 1985; 32: 177–184.

    Article  PubMed  CAS  Google Scholar 

  36. Hersh LT, Barr RC, Spach MS: An analysis of transfer coefficients calculated directly from epicardial and body surface potential measurements in the intact dog. IEEE Trans Biomed Eng 1978; 25: 446–461.

    Article  PubMed  CAS  Google Scholar 

  37. Steinhaus BM, Spitzer KW, Burgess MJ, Abildskov JA: Electrotonic interaction in a model of anisotropic cardiac tissue. Proceedings 1986 Summer Computer Simulation Conference. 1986: 421–426.

    Google Scholar 

  38. Joyner RW, Picone J, Veenstra R, Rawling D: Propagation through electrically coupled cells: Effects of regional changes in membrane properties. Circ Res 1983; 53: 526–534.

    PubMed  CAS  Google Scholar 

  39. Spach MS, Miller WT, Miller-Jones E, Warren RB, Barr RC: Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circ Res 1979; 54: 188–204.

    Google Scholar 

  40. Green LS, Lux RL, Haws, CW, Williams RR, Hunt SC, Burgess MJ: Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects. Circulation 1985; 71: 244–253.

    Article  PubMed  CAS  Google Scholar 

  41. Rolli A, Bonatti V, Maffei ML, Finardi A, Lazzeroni E, Botti G, Francescon P: Accuracy of body surface maps in discriminating patients with postinfarction sustained ventricular tachycardias. New Trends in Arrhythmias 1985; 1: 479–482.

    Google Scholar 

  42. Gardner MJ, Montague TJ, Armstrong CS, Horacek BM, Smith ER: Vulnerability to ventricular arrhythmias: Assessment by mapping of body surface potential. Circulation 1986; 73: 684–692.

    Article  PubMed  CAS  Google Scholar 

  43. Abildskov JA: The ventricular gradient and re-polarization. Jpn Heart J 1986; 27: 197–204.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Taccardi, B. (1998). Future Prospects and Applications. In: Mirvis, D.M. (eds) Body Surface Electrocardiographic Mapping. Developments in Cardiovascular Medicine, vol 82. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1769-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1769-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8992-0

  • Online ISBN: 978-1-4613-1769-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics