Skip to main content

Biotechnology of Hemopoietic Cells in Culture

  • Chapter
Biotechnology in blood transfusion

Part of the book series: Developments in Hematology and Immunology ((DIHI,volume 21))

Abstract

In the past few years, advances in biotechnology and gene cloning have contributed much to the culture and identification of specific hemopoietic cells and to the therapeutic application of blood cells or cell products in clinical medicine. Recent insights on the regulation of hematopoiesis and the applications of new technologies now permit growth of significant quantities of blood cells. Furthermore, these advances have permitted a more precise kinetic analysis of hemopoietic growth induced by natural and synthetic growth factors. Growth factors are new powerful tools which can be used clinically for the manipulation of the hemopoietic milieu during disturbed hemopoietic states. Clonal culture is useful in that it can be used to examine the viability of stem cells from specimens that have been stored for various time periods such as is commonly done in blood banks. Evaluation of stem cell viability by such clonogenic assays and the separation of specific cell populations may be of particular significance to the area of bone marrow transplantation. In particular, recognition and quantitation of immediate progenitor cell compartments within a specimen is possible and the response of specific cell populations within the specimen to various biological response modifiers can be evaluated. Additionally, clonal culture is a useful tool for examining stem cell kinetics and growth patterns by bone marrow cells from disturbed hematological states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boggs S, Boggs D. Multipotent stem cells in vivo In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:1–72.

    Google Scholar 

  2. Messner HA. Multipotent stem cells in vitro In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:73–86.

    Google Scholar 

  3. Kurland JI. Granulocyte-monocyte progenitor cells. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:87–122.

    Google Scholar 

  4. Rozenszain LA, Radnay J, Nussenblatt R, Sredni B. Human lymphoid cells and their progenitors: Isolation, identification and colony growth. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:150–79.

    Google Scholar 

  5. Greenberger JS. Long-term hematopoietic cultures. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:203–42.

    Google Scholar 

  6. Preisler H, Kirshner J, Early AP. Leukemia cell cultures. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:243–68.

    Google Scholar 

  7. Pluznik DH, Sachs L. The cloning of normal mast cells in tissue culture. J Cell Comp Physiol 1965;66:319–25.

    Article  CAS  Google Scholar 

  8. Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro Aust J Exp Biol Med Sci 1966;44:287–93.

    Article  PubMed  CAS  Google Scholar 

  9. Harris P, Ralph P. Human leukemia models of myelomonocytic development: A review of the HL60 and U937 cell lines. J Leuk Bio 1985;37:407–12.

    CAS  Google Scholar 

  10. Metcalf D. The molecular biology and functions of the granulocyte macrophage colony stimulating factors. Blood 1986;67:257–67.

    PubMed  CAS  Google Scholar 

  11. Sporn MD, Todaro G. Autocrine secretion and malignant transformation of cells. N Engl J Med 1980;303:878–80.

    Article  PubMed  CAS  Google Scholar 

  12. Chiao JW, Freitag WF, Steinmetz JC, Andreeff M. Changes of cellular markers during differentiation of HL-60 promyelocytes to macrophages as induced by T lymphocyte conditioned medium. Leuk Res 1981;5:477–83.

    Article  PubMed  CAS  Google Scholar 

  13. Chiao JW, Andreeff M, Freitag WB, Arlin Z. Induction of in vitro proliferation and maturation of human aneuploid myelogenous leukemic cells. J Exp Med 1982;155:1357–64.

    Article  PubMed  CAS  Google Scholar 

  14. Leung K, Chiao JW. Human leukemia cell maturation induced by a T cell lymphokine isolated from medium conditioned by normal lymphocytes. Proc Natl Acad Sci (USA) 1985;82:1209–13.

    Article  CAS  Google Scholar 

  15. Heil MF, Chiao JW. Cell cycle effects of an autologous growth promoter from human leukemia cells. Exp Cell Res 1985;157:282–7.

    Article  PubMed  CAS  Google Scholar 

  16. Lutton JD, Ascensao JL, Chiao JW, Levere RD. Divergent production of autostimulatory activity and colony stimulating activity by L1210 leukemia. Exp Hemat 1986;14:531.

    Google Scholar 

  17. Ogawa M, Leary AG. Erythroid progenitors. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:123–32.

    Google Scholar 

  18. Donahue RE, Emerson SG, Wang EA, Wong GG, Clark SC, Natan DG. Demonstration of burst-promoting activity of recombinant human GM-CSF on circulating erythroid progenitors using an assay involving the delayed addition of erythropoietin. Blood 1985;66:1479–81.

    PubMed  CAS  Google Scholar 

  19. Mazur EM, Hoffman R. Human megakaryocyte progenitors. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:133–49.

    Google Scholar 

  20. Leary AG, Ogawa M. Identification of pure and mixed basophil colonies in culture of human peripheral blood and marrow cells. Blood 1984;64:78–83.

    PubMed  CAS  Google Scholar 

  21. Denburg JA, Messner H, Lim B, Jamal N, Telizyn S, Bienenstock J. Clonal origin of human basophil/mast cells from circulating multipotent hemopoietic progenitors. Exp Hemat 1985;13:185–8.

    PubMed  CAS  Google Scholar 

  22. Allen TD, Dexter TM. Cellular interrelationships during in vitro granulopoiesis. Different 1976;6:191–4.

    Article  CAS  Google Scholar 

  23. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of hematopoietic stem cells in vitro J Cell Phy 1977;91:335–44.

    Article  CAS  Google Scholar 

  24. Lutton JD, Osborn DC, Zanjani ED, Wasserman LR. Stimulation inhibition of granulocyte and mononuclear colony formation by conditioned medium from mouse peritoneal cells. JRES 1975;18:186–95.

    CAS  Google Scholar 

  25. Lutton JD, Schmalzer EA, Rao AN, Rao SP, Levere RD Erythroid colony studies on sickle cell anemia in hypoproliferative crisis. Am J Hemat 1981;8:15–21.

    Article  Google Scholar 

  26. Lutton JD, Abraham NG, Friedland M, Levere RD. The toxic effects of heavy metals on rat bone marrow in vitro erythropoiesis: Protective role of hemin and zinc. Env Res 1984;35:97–103.

    Article  CAS  Google Scholar 

  27. Abraham NG, Lutton JD, Levere RD. The role of haem biosynthetic and degra-dative enzymes in erythroid colony development: The effect of haemin. Brit J Haemat 1982;50:17–28.

    Article  Google Scholar 

  28. Isocove NN, Sieber F, Winterhalter KH. Erythroid colony formation in cultures of mouse and human bone marrow: Analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Phy 1974;83:309–20.

    Article  Google Scholar 

  29. Mazur EM, Hoffman R, Bruno E. Regulation of human megakaryocytopoiesis. J Clin Invest 1981;68:733–41.

    Article  PubMed  CAS  Google Scholar 

  30. Yang HH, Bruno E, Hoffman R. Studies of human megakaryocytopoiesis using an anti-megakaryocyte colony stimulating factor antiserum. J Clin Invest 1986;77:1873–80.

    Article  PubMed  CAS  Google Scholar 

  31. Breitman TP, Collins SJ, Keene BR. Replacement of serum by insulin and transferrin supports growth and differentiation of the human promyelocytic cell line HL-60. Exp Cell Res 1980;126:494–8.

    Article  PubMed  CAS  Google Scholar 

  32. Lutton JD, Levere RD. Endogenous erythroid colony formation by peripheral blood mononuclear cells from patients with myelofibrosis and polycythemia vera. Acta Haemat 1979;62:94–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lutton JD, Abraham NG, Hoffman R, Ritchey AK, Levere RD. Sideroblastic anemia: Differences in bone marrow erythroid colony growth responses to erythropoietin in plasma clot and methylcellulose cultures. Am J Hemat 1984;16: 219–26.

    Article  PubMed  CAS  Google Scholar 

  34. Lutton JD, Chiao JW, Ascensao JL, Arlin Z, Atamer M, Levere RD. Humoral dependent hemopoiesis and flow cytometric analysis of chronic myelogenous leukemia in erythroblastic transformation. Acta Haemat 1987;77:120–3.

    Article  PubMed  CAS  Google Scholar 

  35. Friedland M, Lutton JD, Spitzer R, Levere RD. Dyskeratosis congenita with hypoplastic anemia: A stem cell defect. Am J Hemat 1985;20:85–7.

    Article  PubMed  CAS  Google Scholar 

  36. Broudy VC, Zuckerman KS, Jetmalani S, Fitchen JH, Bagby GC. Monocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hematopoietic growth factors. Blood 1986;68:530–4.

    PubMed  CAS  Google Scholar 

  37. Cronkite EA, Miller ME, Garnett H, Harigaya K. Regulation of hematopoiesis: Inhibitors and stimulators produced by a murine bone marrow stromal cell line (H-1). In: Killman SV, Cronkite EP, Muller Borat CN (eds). Haemopoietic stem cells. Munksgaard Pub Co., Copenhagen 1982:266–82.

    Google Scholar 

  38. Gordon MY. Granulopoietic effects of factors produced by cultured human marrow fibroblasts. Stem Cells 1982;1:180.

    PubMed  CAS  Google Scholar 

  39. Gordon MY, Kearney L, Hibbin JA. Effects of human marrow stromal cells on proliferation by human granulocytic (GM-CFC), erythroid (BFU-E) and mixed (MIX-CFC) colony forming cells. Brit J Haemat 1983;53:317.

    Article  PubMed  CAS  Google Scholar 

  40. Bagby GC, Rigas VD, Bennet RM, Vanenbark AA, Gared HS. Interaction of lactoferrin, monocytes and T-lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro J Clin Invest 1981;68:56–63.

    Article  PubMed  CAS  Google Scholar 

  41. Bagby GC, McCall E, Bergstrom KA, Burger D A monokine regulates colony-stimulating activity production by vascular endothelial cells. Blood 1983;62: 663–8.

    PubMed  CAS  Google Scholar 

  42. Bagby GC, McCall E, Layman DL. Regulation of colony-stimulating activity production. Interactions of fibroblasts, mononuclear phagocytes and lactoferrin. J Clin Invest 1983;71:340–4.

    Article  PubMed  CAS  Google Scholar 

  43. Zuckerman KS, Bagby GC, McCall E et al. A monokine stimulates production of human erythroid burst-promoting activity by endothelial cells in vitro J Clin Invest 1985;75:722–5.

    Article  PubMed  CAS  Google Scholar 

  44. Segal GM, McCall E, Stueve T, Bagby GC. Monokine-stimulated endothelial cells promote human megakaryocyte and mixed-cell colony growth. Blood 1985; 66:464a.

    Google Scholar 

  45. McCall E, Rathbun RK, Riscoe M, Wilkinson B, Bagby GC. Human placental conditioned medium contains monocyte derived recruiting activity (MRA). Exp Hemat 1986;14:789–93.

    PubMed  CAS  Google Scholar 

  46. Bagby GC, Dinarello CA, Wallace P, Wagner C, Hefeneider S, McCall E. Inter-leukin-1 stimulates granulocyte macrophage colony stimulating activity release by vascular endothelial cells. J Clin Invest 1986;78:1316–23.

    Article  PubMed  CAS  Google Scholar 

  47. Segal GM, McCall E, Stueve T, Bagby GC. Interleukin-1 stimulates endothelial cells to release multilineage human colony stimulating activity. J Immunol 1987; 138:1772–8.

    PubMed  CAS  Google Scholar 

  48. Sokal G, Michaux JL, Van den Berghe H et al. A new hematopoietic syndrome with a distinct karyotype: The 5q chromosome. Blood 1975;46:519–33.

    PubMed  CAS  Google Scholar 

  49. Begley CG, Metcalf D, Lopez AF, Nicola NA. Fractionated populations of normal human marrow cells respond to both colony-stimulating factors with granulocyte-macrophage activity. Exp Hemat 1985;13:956–62.

    PubMed  CAS  Google Scholar 

  50. Nicola NA, Metcalf D, Johnson GR, Burgess AW. Separation of functionally distinct human granulocyte macrophage colony stimulating factors. Blood 1979; 54:614–22.

    PubMed  CAS  Google Scholar 

  51. Gasson JC, Weisbart RH, Kaufman SE et al. Purified human granulocyte macrophage colony stimulating factor: Direct action on neutrophils. Science 1984;226:1339–42.

    Article  PubMed  CAS  Google Scholar 

  52. Wong GG, Witek J, Temple PA et al. Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 1985;288:810–5.

    Article  Google Scholar 

  53. Lee F, Yokota T, Otsuka T et al. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells. Proc Natl Acad Sei (USA) 1985;82:4360–5.

    Article  CAS  Google Scholar 

  54. Metcalf D, Begley CG, Johnson GR et al. Biologic properties in vitro of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 1986; 67:37–45.

    PubMed  CAS  Google Scholar 

  55. Park LS, Friend D, Gillis S, Urdal DL. Characterization of the cell surface receptors for human granulocyte/macrophage colony stimulating factors. J Exp Med 1986;164:251–62.

    Article  PubMed  CAS  Google Scholar 

  56. Cantrell MA, Anderson D, Cerretti DP et al. Cloning, sequence and expression of a human granulocyte macrophage colony-stimulating factor. Proc Natl Acad Sei (USA) 1985;82:6250–4.

    Article  CAS  Google Scholar 

  57. Metcalf D, Johnson GR, Burgess AW. Direct stimulation by purified GM-CSF of the proliferation of multipotential and erythroid precursor cells. Blood 1980; 55:138–47.

    PubMed  CAS  Google Scholar 

  58. Sehgal PK, Mather DG, Clark SC. Stimulation of hematopoiesis in primates by continuous infusion of recombinant human GM-CSF. Nature 1986;323:872–5.

    Google Scholar 

  59. Kawasaki ES, Ladner MB, Wang AM, van Arsdell J, Warren A. Cloning of a cDNA encoding human macrophage-specific colony stimulating factor (CSF-1). Science 1985;230:291–4.

    Article  PubMed  CAS  Google Scholar 

  60. Sacca R, Stanley ER, Sherr CJ, Rettenmier CW. Specific binding of the mononuclear phagocyte colony-stimulating factor CSF-1 to the product of the v-fms oncogene. Proc Natl Acad Sci (USA) 1986;83:3331–6.

    Article  CAS  Google Scholar 

  61. Wisniewski LP, Hirschhorn K. Acquired partial deletions of the long arm of chromosome 5 in hematologic disorders. Am J Hematol 1983;15:295–300.

    Article  PubMed  CAS  Google Scholar 

  62. Rettenmier CW, Chen JH, Roussel MF, Sherr CJ. The product of the c-fms proto-oncogene: a glycoprotein with associated tyrosinekinase activity Science 1985;228:320–3.

    Article  PubMed  CAS  Google Scholar 

  63. Nicola A, Metcalf D, Matsumoto M, Johnson GR. Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells: Identification as granulocyte colony-stimulating factor (G-CSF). J Bio Chem 1983;258:9017–23.

    CAS  Google Scholar 

  64. Nicola NA, Begley CG, Metcalf D. Identification of the human analogue of a regulator that induces differentiation in murine leukemic cells. Nature 1985;314:625–8.

    Article  PubMed  CAS  Google Scholar 

  65. Nicola NA, Metcalf D. Binding of the differentiation-inducer, granulocyte-colony stimulating factor, to responsive but not unresponsive leukemic cell lines. Proc Natl Acad Sci (USA) 1984;81:3765–70.

    Article  CAS  Google Scholar 

  66. Weite K, Platzer E, Lu L. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci (USA) 1985;82:1562–31.

    Google Scholar 

  67. Souza LM, Boone C, Gabrilove G et al. Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 1986;232:61–9.

    Article  PubMed  CAS  Google Scholar 

  68. Nomura H, Imazeki I, Oheda M et al. Purification and characterization of granulocyte colony stimulating factor (G-CSF). EMBO Jour 1986;5:871–6.

    CAS  Google Scholar 

  69. Nagata S, Tsuchiya M, Asano S et al. Molecular cloning and expression of cDNA for human granulocyte colony stimulating factor. Nature 1986;319:415–8.

    Article  PubMed  CAS  Google Scholar 

  70. Yang YC, Ciarletta AB, Temple PA et al. Human IL-3 (Multi-CSF): Identification by expression of cloning of a novel hemopoietic growth factor related to murine IL-3. Cell 1986;47:3–10.

    Article  PubMed  CAS  Google Scholar 

  71. Barlow DP, Bucan M, Lehrach H, Hogan LM, Gough NM. Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and multi-CSF (11–3). EMBO Jour 1987;6:617–23.

    CAS  Google Scholar 

  72. Spivak JL. The mechanism of action of erythropoietin. Int J Cell Clon 1986;4: 139–66.

    Article  CAS  Google Scholar 

  73. Platzer E, Weite K, Gabrilove JL et al. Biological activities of a human pluripotent hemopoietic colony stimulating factor on normal and leukemic cells. J Exp Med 1985;162:1788–95.

    Article  PubMed  CAS  Google Scholar 

  74. Bartelmez SH, Dodge WH, Mahmound AAF, Bass DA. Stimulation of eosinophil production in vitro by eosinophilopoietin and spleen cell derived eosinophil growth stimulating factor. Blood 1980;56:706–13.

    PubMed  CAS  Google Scholar 

  75. Rozenszajn LA, Radnay J, Nussenblatt R, Sredni B. Human lymphoid cells and their progenitors: Isolation, identification and colony growth. In: Golde D (ed). Hematopoiesis. Churchill Livingstone Pubs, NY 1984:150–79.

    Google Scholar 

  76. Noell RJ, Snow EC, Uhr JW, Vitetta ES. Activation of antigen specific B cells: Role of T cells, cytokines and antigens in induction of growth and differentiation. Proc Natl Acad Sci (USA) 1983;80:6628–33.

    Article  Google Scholar 

  77. Howard M, Paul WE. Reguation of B cell growth and differentiation by soluble factors. Ann Rev Immunol 1983;1:307–14.

    Article  CAS  Google Scholar 

  78. Dexter TM, Moore M. Growth and development in the haemopoietic system: the role of lymphokines and their possible therapeutic potential in disease and malignancy. Carcinogenesis 1986;7:509–16.

    Article  PubMed  CAS  Google Scholar 

  79. Golde D. Clinical role, therapeutic promise of CSFs. In: Oncology Times 1986;Oct:3.

    Google Scholar 

  80. Lymphokines and monokines in the clinic. Imm Today 1986;7:185–7.

    Google Scholar 

  81. Boyum A. Separation of leukocytes from blood and bone marrow. Scand J Clin Lab Invest 1968;21:7–13.

    Google Scholar 

  82. Mizobe F, Murtial E, Colby-Germinario S, Livett BG. An improved technique for the isolation of lymphocytes from small volumes of peripheral mouse blood. J Immunol Meth 1982;48:269–79.

    Article  CAS  Google Scholar 

  83. Misiti J, Spivak JL. Separation of erythroid progenitor cells in mouse bone marrow by isokinetic-gradient sedimentation. Blood 1979;54:105–16.

    PubMed  CAS  Google Scholar 

  84. Levitt L, Kipps TJ, Engleman EG, Greenberg PL. Human bone marrow and peripheral blood T-lymphocyte depletion: Efficacy and effects of both T-cells and monocytes on growth of hematopoietic progenitors. Blood 1985;65:663–79.

    PubMed  CAS  Google Scholar 

  85. Kaplan ME, Clark C. An improved rosetting assay for detection of human lymphocytes. J Immunol Meth 1974;5:131–5.

    Article  CAS  Google Scholar 

  86. Visser JWM, Eliason JE In vivo studies on the regeneration kinetics of enriched populations of haemopoietic spleen colony-forming cells from normal bone marrow. Cell Tiss Kinet 1983;16:385–92.

    CAS  Google Scholar 

  87. Visser JWM, Bauman JGJ, Mulder AH, Eliason JF, DeLeeuw AM. Isolation of murine pluripotent hemopoietic stem cells. J Exp Med 1984;59:1576–90.

    Article  Google Scholar 

  88. Miller RD, Phillips RA. Separation of cells by velocity sedimentation. J Cell Physiol 1969;73:191–202.

    Article  PubMed  CAS  Google Scholar 

  89. Heath DS, Axelrad AA, McLeod DL, Shreeve MM. Separation of the ery-thropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood 1976;47:777–92.

    PubMed  CAS  Google Scholar 

  90. Hassan MW, Lutton JD, Levere RD, Rieder RF, Cederquist LL. In vitro culture of erythroid colonies from human fetal liver and umbilical cord blood. Brit J Haemat 1979;41:477–84.

    Article  PubMed  CAS  Google Scholar 

  91. Lindahl PE. Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 1948;161:648–9.

    Article  PubMed  CAS  Google Scholar 

  92. DeWitte T, Raymakers R, Plas A, Koekman E, Wessels H, Haanen C. Bone marrow repopulation capacity after transplantation of lymphocyte-depleted allogenic bone marrow using counter flow centrifugation. Transplant 1984;37:151–5.

    Article  CAS  Google Scholar 

  93. Sharp DW, Lacy P. Human islet isolation and transplantation. Abstract. Am Diabetes Assoc 1985.

    Google Scholar 

  94. Nijhof W, Wierenga PK. Isolation and characterization of the erythroid progenitor cell CFU-E. J Cell Biol 1983;96:386–92.

    Article  PubMed  CAS  Google Scholar 

  95. Heil MF, Wu JM, Chiao JW. Cell-cycle differences of HL-60 leukemia cells fractionated by centrifugal elutriation. Biochim Biophys Acta 1985;845:17–20.

    Article  PubMed  CAS  Google Scholar 

  96. Abraham NG, Friendland ML, Levere RD. Heme metabolism in erythroid and hepatic cells. In: Brown E (ed). Progress in Hematology 1983;XIII:75–130.

    Google Scholar 

  97. Abraham NG, Lutton JD, Levere RD. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture. J Lab Clin Med 1985;105: 593–600.

    Google Scholar 

  98. Abraham NG, Lutton JD, Levere RD. Heme metabolism and erythropoiesis in abnormal iron states: Role of δ-aminolevulinic acid synthase and heme oxygenase. Exp Hemat 1985;13:838–43.

    PubMed  CAS  Google Scholar 

  99. Brown A, Lutton JD, Nelson J, Abraham NG, Levere RD. Microenviron-mental cytokines and expression of erythroid heme metabolic enzymes. Blood Cells 1987;12:123–36.

    Google Scholar 

  100. Lutton JD, Solangi K, Ran JY et al. Development of a cytachrome P450 monooxygenase system in clonogenic hemopoietic cells. Res Comm Chem Path Pharm 1987;56:87–99.

    CAS  Google Scholar 

  101. Schwartzman ML, Pagano PJ, McGiff JC, Abraham NG. Immunochemical studies on the contribution of NADPH cytochrome P-450 reductase to the cytochrome P-450 dependent metabolism of arachidonic acid. Arch Biochem Biophys 1987;252:635–45.

    Article  PubMed  CAS  Google Scholar 

  102. Metcalf D. Hemopoietic Colonies: In vitro cloning of normal and leukemic cells. Springer-Verlag, NY. 1977:1–227.

    Google Scholar 

  103. Hoffman R, Zanjani ED, Lutton JD, Zalusky R, Wasserman LR. Suppression of erythroid colony formation by lymphocytes from patients with aplastic anemia. N Engl J Med 1977;296:10–3.

    Article  PubMed  CAS  Google Scholar 

  104. Abraham NG, Lutton JD, Levere RD. Benzene modulation of bone marrow hemopoietic and drug metabolizing systems. Biochem Arch 1985;1:85–96.

    Google Scholar 

  105. Abraham NG, Lutton JD, Freedman ML, Levere RD Benzene modulation of liver cell structure and heme-cytochrome P-450 metabolism. Am J Med Sci 1986;29:81–6.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Lutton, J.D., Levere, R.D., Abraham, N.G. (1988). Biotechnology of Hemopoietic Cells in Culture. In: Sibinga, C.T.S., Das, P.C., Overby, L.R. (eds) Biotechnology in blood transfusion. Developments in Hematology and Immunology, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1761-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1761-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8988-3

  • Online ISBN: 978-1-4613-1761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics