Cardiac Defense Mechanisms against Oxidative Damage: The Role of Superoxide Dismutase and Glutathione-Related Enzymes

  • Toshihisa Ishikawa
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 86)


Cardiomyopathy resulting from oxidative damage inflicted by hyperoxia or administration of antineoplastic agents, such as adriamycin, has been well documented (1,2). The heart is the organ continuously exposed to highly oxygenated blood from the lung. Within aeroboically living cells including the cardiac cell, molecular oxygen is reduced by a number of pathways to produce reactive oxygen species, such as superoxide anion radical (O2 -), hydrogen peroxide (H2O2), hydroxyl radical (OH.) and oxygen-centered radicals of organic compounds (ROO. and RO.) (3). There is increasing evidence that these reactive oxygen species are involved in processes of cellular oxidative damage (4–7). Biological importance of reactive intermediates generating from radical-initiated peroxidative breakdown of polyunsaturated fatty acids, e.g. hydroxyalkenals, has also been implied in propagation of oxidative damage as well as in mutagenic effects and inflammatory responces (8).


Xanthine Oxidase Keshan Disease Perfusion Time Electron Spin Reso Reoxygenation Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balentine, J.D. Pathology of Oxygen Toxicity, Academic Press, New York, 1982.Google Scholar
  2. 2.
    Doroshow, J. and Hochstein, J. In: Pathology of Oxygen (Ed. A.P. Autor), Academic Press, New York, 1982, pp. 245–275.Google Scholar
  3. 3.
    Chance, B., Sies, H. and Boveris, A. Physiol. Rev. 59: 527–605, 1979.PubMedGoogle Scholar
  4. 4.
    Fridovich, I. Arch. Biochem. Biophys. 247: 1–11, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Halliwell, B., Gutteridge, J.M.C. Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 1985.Google Scholar
  6. 6.
    Sies, H. (Ed.) Oxydative Stress, Academic Press, Orlando, 1985.Google Scholar
  7. 7.
    Sies, H. Angew. Chem. Int. Ed. Engl. 25: 1058–1071, 1986.CrossRefGoogle Scholar
  8. 8.
    Esterbauer, H. In: Free Radicals, Lipid Peroxidation and Cancer (Eds. D.C.H. McBrien and T.F. Slater), Academic Press, London, 1982, pp. 100–128.Google Scholar
  9. 9.
    Ishikawa, T., Akerboom, T.P.M. and Sies, H. In: Target Organ Toxicity (Ed. G.M. Cohen), CRC Press, Boca Raton, 1986, pp. 129–143.Google Scholar
  10. 10.
    Ishikawa, T. and Sies, H. J. Biol. Chem. 259; 3838–3843, 1984.Google Scholar
  11. 11.
    Ishikawa, T., Esterbauer, H. and Sies, H. J. Biol. Chem. 261: 1576–1581, 1986.Google Scholar
  12. 12.
    Ishikawa, T. In: The Role of Oxygen Radicals in Cardiovascular Diseases (Eds. F. Ursini and A. L’Abbate) 1987, in press.Google Scholar
  13. 13.
    Kaplan-Breslar, A.E. J. Gen. Physiol. 48: 685–698, 1965.CrossRefGoogle Scholar
  14. 14.
    Loschen, G., Flohe, L. and Chance, B. FEBS Lett. 18: 261–264, 1971.PubMedCrossRefGoogle Scholar
  15. 15.
    Boveris, A., Oshino, N. and Chance, B. Biochem. J. 128: 617–630, 1973.Google Scholar
  16. 16.
    Boveris, A. and Chance, B. Biochem. J. 134: 707–716, 1973.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Loschen, G., Azzi, A., Richter, C. and Flohe, L. FEBS Lett. 42: 68–72.Google Scholar
  18. 18.
    Boveris, A. and Cadenas, E. FEBS Lett. 54: 311–314, 1975.PubMedCrossRefGoogle Scholar
  19. 19.
    Boveris, A., Cadenas, E. and Stoppani, A.O.M. Biochem. J. 156: 435–444, 1976.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Cadenas, E., Boveris, A., Ragan, C.I. and Stoppani, A.O.M. Arch. Biochem. Biophys. 180: 248–257, 1977.PubMedCrossRefGoogle Scholar
  21. 21.
    Weisiger, R.A. and Fridovich, I. J. Biol. Chem. 248: 3582–3592, 1973.Google Scholar
  22. 22.
    Weisiger, R.A. and Fridovich, I. J. Biol. Chem. 248: 4793–4796Google Scholar
  23. 23.
    Tyler, D.D. Biochem. J. 147: 493–504, 1975.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Peeter-Joris, C., Vandevoorde, A. and Baudhuin, P. Biochem. J. 150: 31–39, 1975.Google Scholar
  25. 25.
    Panchenko, L.F., Brusov, O.S., Garasimov, A.M. and Loktaeva, T.D. FEBS Lett. 55: 84–87, 1975.PubMedCrossRefGoogle Scholar
  26. 26.
    Patton, S.E., Rosen, G. and Rauckman, E.J. Mol. Pharmacol. 18: 588–593, 1980.PubMedGoogle Scholar
  27. 27.
    Geller, B.L. and Winge, D.R. J. Biol. Chem. 257: 8945–8952, 1982.Google Scholar
  28. 28.
    Steffence, G.J., Michelson, A.M., Puget, T. and Flohe, L. Biol. Chem. Hoppe-Seyler 367: 1017–1024, 1986.CrossRefGoogle Scholar
  29. 29.
    Salin, M.L., Day, E.D. and Crapo, J.D. Arch. Biochem. Biophys. 187: 223–228, 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Ishikawa, T., Hunaiti, A.R., Piechot, G. and Wolf, B. Eur. J. Biochem. in press.Google Scholar
  31. 31.
    Autor, A.P. J. Biol. Chem. 257: 2713–2718, 1982.PubMedGoogle Scholar
  32. 32.
    Hirano, K., Fukuta, M., Adachi, T., Hayashi, K., Sugiura, M., Mori, Y. and Toyoshi, K. Biochem. Biophys. Res. Commun. 129: 89–94, 1985.PubMedCrossRefGoogle Scholar
  33. 33.
    Stevens, J.B. and Autor, A.P. J. Biol. Chem. 255: 1054–1057, 1977.Google Scholar
  34. 34.
    Dryer, S.E., Dryer, R.L. and Autor, A.P. J. Biol. Chem. 255: 1054–1057, 1980.PubMedGoogle Scholar
  35. 35.
    Kasemset, D. and Oberley, L.W. Biochem. Biophys. Res. Commun. 122: 682–686, 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Leighton, F., Poole, B., Beaufay, H., Baudhuin, P., Caffey, J.W., Fowler, S. and de Duve, C J. Cell. Biol. 37: 482–513, 1968.CrossRefGoogle Scholar
  37. 37.
    Oshino, N. and Chance, B. Biochem. J. 162: 509–525, 1977.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Herzog, V. and Fahimi, H.D. Science, 185: 271–273, 1974.PubMedCrossRefGoogle Scholar
  39. 39.
    Nohl, H. and Hegner, D. FEBS Lett. 89: 126–130, 1978.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen, X., Yang, G., Chen, X., Wen, Z. and Ge, K. Biol. Trace Element Res. 2: 91–107, 1980.CrossRefGoogle Scholar
  41. 41.
    Pheifer, R., Karl, G. and Scholz, R. Biol. Chem. Hoppe-Seyler, 367: 1061–1068, 1986.CrossRefGoogle Scholar
  42. 42.
    Rydstrom, J., Hoek, J.B. and Ernster, L. In: The Enzymes (Ed. P.D. Boyer), Academic Press, New York, vol. 13, 1976, pp. 51–88.Google Scholar
  43. 43.
    Kosower, N.S. and Kosower, E.M. Intern. Rev. Cytol. 54: 109–160, 1978.CrossRefGoogle Scholar
  44. 44.
    Sies, H., Brigerius, R. and Graf, P. In: Advances in Enzyme Regulation, (Ed. G. Weber), Pergamon Press, Oxford, vol. 26, 1987, pp. 175–189.Google Scholar
  45. 45.
    Grimm, L.M., Collison, M.W., Fisher, R.A. Thomas, J.A. Biochim. Biophys. Acta 844: 50–54, 1985.PubMedCrossRefGoogle Scholar
  46. 46.
    Collison, M.W., Bilder, D., Grimm, L.M. and Thomas, J.A. Biochim. Biophys. Acta 885: 58–67, 1986.PubMedCrossRefGoogle Scholar
  47. 47.
    Ishikawa, T. and Sies, H. In: Coenzymes and Cofactors (Eds. D. Dolphin, R. Poulson and O. Avramovic) John Wiley Publisher, New York, in press.Google Scholar
  48. 48.
    Ishikawa, T. In: Reaktive Sauerstoffspezies in der Medizin (Eds. E.F. Elstner, W. Bors and W. Wilmanns) Springer-Verlag, Berlin, 1986, pp. 108–111.Google Scholar
  49. 49.
    De Groot, H., Noll, T. and Sies, H. Arch. Biochem. Biophys. 243: 556–562, 1985.PubMedCrossRefGoogle Scholar
  50. 50.
    Doroshow, J.H. and Davis, K.J.A. J. Biol. Chem. 261: 3068–3074, 1986.PubMedGoogle Scholar
  51. 51.
    Ishikawa, T., Zimmer, M. and Sies, H. FEBS Lett. 200, 128–132, 1986.PubMedCrossRefGoogle Scholar
  52. 52.
    Hearse, D.J., Humphrey, S.M. and Chain, E.B. J. Mol. Cell. Cardiol. 5: 395–407, 1973.PubMedCrossRefGoogle Scholar
  53. 53.
    Zweier, J.L., Flaherty, J.T. and Weisfeldt, M.L. Proc. Natl. Acad. Sci. USA, 84: 1404–1407, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Roy, R.S. and McCord, J.M. In: Oxy Radicals and their Scavenger Systems (Eds. R. Greenwald and G. Cohen), Elsevier, New York, vol.2, pp. 145–156.Google Scholar
  55. 55.
    Bernnier, M., Hearse, D.J. and Manning, A.S. Circ. Res. 58: 331–340, 1986.CrossRefGoogle Scholar
  56. 56.
    Kehrer, J.P., Piper, H.M. and Sies, H Free Rad. Rec. Comms. 3: 69–78, 1987.CrossRefGoogle Scholar
  57. 57.
    Grum, CM., Ragsdale, R.A., Ketai, L.H. and Shlafer, M. Biochem. Bophys. Res. Commn. 141: 1104–1108, 1986.CrossRefGoogle Scholar
  58. 58.
    Esterbauer, H., Cheeseman, K.H., Dianzani, M.U., Poli, G. and Slater, T.F. Biochem. J. 208: 129–140, 1982.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Poli, G., Dianzani, M.U., Cheeseman, K.H., Slater, T. F., Lang, J. and Esterbauer, H. Biochem. J. 227: 629–638, 1985.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Benedetti, A., Comporti, M. and Esterbauer, H. Biochim. Biophys. Acta 620: 281–296, 1980.PubMedCrossRefGoogle Scholar
  61. 61.
    Marnett, L.J., Hurd, H.K., Holstein, M.C., Levin, D.E., Esterbauer, H. and Ames, B.N. Mutation Res. 148: 25–34, 1985.PubMedCrossRefGoogle Scholar
  62. 62.
    Mannervik, B. Adv. Enzymol. Relat. Areas Mol. Biol. 57: 357–417, 1985.PubMedGoogle Scholar
  63. 63.
    Ishikawa, T. and Sies, H. FEBS Lett. 169: 156–160 1984.PubMedCrossRefGoogle Scholar
  64. 64.
    Ishikawa, T., Milbert, U., Oesch, F. and Sies, H. Eur. J. Biochem. 154: 299–305, 1986.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Toshihisa Ishikawa
    • 1
  1. 1.Institut fur Physiologische Chemie IUniversitat DusseldorfDusseldorfGermany

Personalised recommendations