Oxygen Radical Mediated Protein Oxidation in Heart

  • H. Fliss
  • M. Masika
  • D. W. Eley
  • B. Korecky
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 86)


The role played by reactive oxygen species in cardiac pathophysiology is presently an area of intense scientific interest. Reperfusion of ischemic myocardium (1), drug metabolism (2), cardiac surgery (3,4), and metabolism of catecholamines (5,6), are all known to produce oxygen free radicals (OFR) and other oxidants capable of effecting pathologies in the heart. A detailed description of the mechanisms of OFR production in these processes is beyond the scope of this chapter. However, they all involve the initial production of superoxide free radical (O 2 - ·). For example, the metabolism of quinone-containing drugs such as adriamycin and daunorubicin (7), is known to produce this oxidant, as is the metabolism of xanthine in ischemic myocardium (8). Superoxide can be reduced further to other reactive oxygen metabolites. The dismutation of superoxide by superoxide dismutase produces hydrogen peroxide (H2O2) which, in the presence of metal catalysts, can form the hydroxyl free radical (OH·) by the Fenton, or Haber-Weiss pathways (9).


Sarcoplasmic Reticulum Papillary Muscle Spontaneous Recovery Negative Inotropic Effect Hypochlorous Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hess ML, Manson NH. J Mol Cell Cardiol 1984; 16:969–985.PubMedCrossRefGoogle Scholar
  2. 2.
    Thompson JA, Hess ML. Prog Cardiovasc Dis 1986; 28:449–462.PubMedCrossRefGoogle Scholar
  3. 3.
    Royston D, Fleming JS, Desai JB, Westaby S, Taylor KM. J Thorac Cardiovasc Surg 1986; 91:759–766.PubMedGoogle Scholar
  4. 4.
    Cavarocchi NC, England MD, Schaff HV, Russo P, Orszulak TA, Schnell WA Jr, O’Brien JF, Pluth RJ. Circulation 1986; 74(Suppl. III):130–133.Google Scholar
  5. 5.
    Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS. Can J Physiol Pharmacol 1982; 60:1390–1397.PubMedCrossRefGoogle Scholar
  6. 6.
    Rona G. J Mol Cell Cardiol 1985; 17:291–306.PubMedCrossRefGoogle Scholar
  7. 7.
    Thornalley PJ, Dodd NJF. Biochem Pharmacol 1985; 34: 669–674.PubMedCrossRefGoogle Scholar
  8. 8.
    McCord JM. In: Superoxide dismutase: pathological states. Oberley LW (ed.). Boca Raton: CRC Press 1985; Vol. 3, pp. 143–150.Google Scholar
  9. 9.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, Oxford: Clarendon Press, 1985.Google Scholar
  10. 10.
    Mitsos SE, Askew TE, Fantone JC, Kunkel SL, Abrams GD, Schork A, Lucchesi BR. Circulation 1986; 73:1077–1086.PubMedCrossRefGoogle Scholar
  11. 11.
    Lucchesi BR, Mullane KM. Ann Rev Pharmacol Toxicol 1986; 26:201–224.CrossRefGoogle Scholar
  12. 12.
    Thomas EL, Grisham MB, Jefferson M. Method Enz 1986; 132: 569–585.CrossRefGoogle Scholar
  13. 13.
    Lucchesi BR, Romson JL, Jolly SR. In: Therapeutic Approaches to Myocardial Infarct Size Limitation. Hearse DJ, Yellon DM (eds.) New York: Raven Press 1984; pp. 219–249.Google Scholar
  14. 14.
    Braude S, Nolop KB, Flemming JS, Krausz T, Taylor KM, Royston D. Am Rev Respir Dis 1986; 134:867–872.PubMedGoogle Scholar
  15. 15.
    Freeman BA, Crapo JD. In: Advances in the Biology of Disease. Rubin E, Damjanov I (eds.) London: Williams & Wilkins 1984; vol. 1:26–40.Google Scholar
  16. 16.
    Cerutti PA. In: Arachidonic acid metabolism and tumor promotion. Fischer SM, Slaga TJ (eds.) Boston: Martinus Nijhoff Publishing 1985; pp. 131–168.CrossRefGoogle Scholar
  17. 17.
    Cerutti PA. Science 1985; 227:375–381.PubMedCrossRefGoogle Scholar
  18. 18.
    Frenkel K, Chrzan K, Troll W, Teebor GW, Steinberg JJ. Canc Res 1986; 46:5533–5540.Google Scholar
  19. 19.
    Weiss SJ. Acta Physiol Scand 1986; Suppl. 548:9–37.Google Scholar
  20. 20.
    Kappus H. Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance in oxidative stress. Sies H (ed.) London: Academic Press 1985; pp. 273–310.Google Scholar
  21. 21.
    Stam H, Koster JF. In: Prostaglandins and other eicosanoids in the cardiovascular system. Schrör (ed.) Basel: Karger 1985; pp. 131–148.Google Scholar
  22. 22.
    Halliwell B, Gutteridge JMC. Molec Aspects Med 1985; 8: 89–193.CrossRefGoogle Scholar
  23. 23.
    Okabe E, Hiyama E, Oyama M, Odajima C, Ito H, Cho YW. Pharmacology 1982; 25:138–148.PubMedCrossRefGoogle Scholar
  24. 24.
    Rowe GT, Manson NH, Caplan M, Hess ML. Circ Res 1983; 53: 584–591.PubMedCrossRefGoogle Scholar
  25. 25.
    Hess ML, Okabe E, Ash P, Kontos HA. Cardiovasc Res 1984; 18:149–157.PubMedCrossRefGoogle Scholar
  26. 26.
    Kramer JH, Mak IT, Weglicki WB. Circ Res 1984; 55:120–124.PubMedCrossRefGoogle Scholar
  27. 27.
    Gauduel Y, Duvelleroy MA. J Mol Cell Cardiol 1984; 16:459–470.PubMedCrossRefGoogle Scholar
  28. 28.
    Scherer NM, Deamer DW. Arch Biochem Biophys 1986; 246:589–601.PubMedCrossRefGoogle Scholar
  29. 29.
    Albrich JM, Gilbaugh JH III, Callahan KB, Hurst JK. J Clin Invest 1986; 78:177–184.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Spikes JD, Livingstone R. In: Advances Rad Biol. Augustine LG, Mason R, Zelle M (eds.) New York: Academic Press 1969; Vol. 3 pp. 29–121.Google Scholar
  31. 31.
    Grossweiner LI. Curr Top Radiat Res Q 1976; 11:141–199.PubMedGoogle Scholar
  32. 32.
    Foote CS. Free Radical Biol 1976; 2:85–133.Google Scholar
  33. 33.
    Bielski BHJ, Shiue GG. In: Oxygen free radicals and tissue damage. Ciba foundation symposium 65. Amsterdam: Excerpta Medica 1979; pp. 43–48.Google Scholar
  34. 34.
    Trelstad RL, Lawley KR, Holmes LB. Nature 1981; 289:310–312.PubMedCrossRefGoogle Scholar
  35. 35.
    Thomas EL, Jefferson MM, Grisham MB. Biochemistry 1982; 21:6299–6308.PubMedCrossRefGoogle Scholar
  36. 36.
    Matheson NR, Travis J. Biochemistry 1985; 24:1941–1945.PubMedCrossRefGoogle Scholar
  37. 37.
    Clark RA, Szot S, Williams MA, Kagan HM. Biochem Biophys Res Commun 1986; 135:451–457.PubMedCrossRefGoogle Scholar
  38. 38.
    Thomas EL. Infect Immun 1979; 23:522–531.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Winterbourn CC. Biochim Biophys Acta 1985; 840:204–210.PubMedCrossRefGoogle Scholar
  40. 40.
    Clark RA. J Immunol 1986; 136:4617–4622.PubMedGoogle Scholar
  41. 41.
    Coble B-I, Dahlgren C, Hed J, Stendahl O. Biochim Biophys Acta 1984; 802: 501–505.PubMedCrossRefGoogle Scholar
  42. 42.
    Albrich JM, McCarthy CA, Hurst JK. Proc Natl Acad Sci USA 1981; 78:210–214.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST. Science 1985; 227:747–749.PubMedCrossRefGoogle Scholar
  44. 44.
    Clark RA. Adv Inflammation Res 1983; 5:107–146.Google Scholar
  45. 45.
    Travis J, Beatty K, Matheson N. Adv Exp Med Biol 1984; 167:89–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Carp H, Janoff A. Adv Inflammation Res 1983; 5:173–201.Google Scholar
  47. 47.
    Senior RM, Campbell EJ. Clin Lab Med 1983; 3:645–665.PubMedGoogle Scholar
  48. 48.
    Stroncek DF, Vercellotti GM, Huh PW, Jacob HS Arteriosclerosis 1986; 6:332–340.CrossRefGoogle Scholar
  49. 49.
    Weiss SJ, Lampert MB, Test ST. Science 1983; 222:625–628.PubMedCrossRefGoogle Scholar
  50. 50.
    Clark RA. In: Biochemistry and Functions of Phagocytes. Rossi F, Patriarca P (eds.) Plenum Press, New York 1982; pp. 207–216.CrossRefGoogle Scholar
  51. 51.
    Weiss SJ, Regiani S. J Clin Invest 1984; 73:1297–1303.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Brot N, Weissbach H. Trend Biochem Sci 1982; 7:137–139.CrossRefGoogle Scholar
  53. 53.
    Brot N, Weissbach H. Arch Biochem Biophys 1983; 223:271–281.PubMedCrossRefGoogle Scholar
  54. 54.
    Yamasaki RB, Osuga DT, Feeney RE. Anal Biochem 1982; 126: 183–189.PubMedCrossRefGoogle Scholar
  55. 55.
    Yoshimura T, Rot A, Leonard EJ. Biochem Biophys Res Commun 1986; 138:66–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Fliss H, Docherty G. In: Myocardial Ischemia. Dhalla NS et al. (eds.) Nijhoff Publ. Boston 1987; pp. 85–98.CrossRefGoogle Scholar
  57. 57.
    Fliss H, Weissbach H, Brot N. Proc Natl Acad Sci USA 1983; 80:7160–7164.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Ellman GL. Arch Biochem Biophys 1959; 82:70–77.PubMedCrossRefGoogle Scholar
  59. 59.
    Brigelius R. In: Oxidative Stress. Sies H (ed.) Academic Press, London 1985; pp. 243–268.CrossRefGoogle Scholar
  60. 60.
    Mannervik B. In: Thioredoxin and Glutaredoxin Systems: Structure and Function. Holmgren A et al. (eds.) Raven Press, New York 1986.Google Scholar
  61. 61.
    Kensler TW, Taffe BG. In: Adv Free Radical Biol Med 1986; Vol. 2, pp. 347–387.Google Scholar
  62. 62.
    Ziegler DM. Ann Rev Biochem 1985; 54:305–329.PubMedCrossRefGoogle Scholar
  63. 63.
    Nayler WG, Poole-Wilson PA, Williams A. J Mol Cell Cardiol 1979; 11:683–706.PubMedCrossRefGoogle Scholar
  64. 64.
    Hess ML, Okabe E, Kontos HA. J Mol Cell Cardiol 1981; 13: 1375–1379.Google Scholar
  65. 65.
    Bellomo G, Orrenius S. Hepatology 1985; 5:876–882.PubMedCrossRefGoogle Scholar
  66. 66.
    Trimm JL, Salama G, Abramson JJ. J Biol Chem 1986; 261:16092–19098.PubMedGoogle Scholar
  67. 67.
    Hebbel RP, Shalev O, Foker W, Rank BH. Biochim Biophys Acta 1986; 862:8–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Nicotera P, Moore M, Mirabelli F, Bellomo G, Orrenius S. FEBS Lett 1985; 181:149–153.PubMedCrossRefGoogle Scholar
  69. 69.
    Scherer NM, Deamer DW. J Free Radical Biol Med 1986; 2:249–254.CrossRefGoogle Scholar
  70. 70.
    Hill KE, Taylor MA, Burk RF. Biochim Biophys Acta 1987; 923:431–435.PubMedCrossRefGoogle Scholar
  71. 71.
    Sies H, Cadenas E. Phil Trans R Soc Lond 1985; B311:617–631.CrossRefGoogle Scholar
  72. 72.
    Collison MW, Thomas JA. Biochim Biophys Acta 1987; 928:121–129.PubMedCrossRefGoogle Scholar
  73. 73.
    Yagi T, Hatefi Y. Arch Biochem Biophys 1987; 254:102–109.PubMedCrossRefGoogle Scholar
  74. 74.
    Reeves JP, Bailey CA, Hale CC. J Biol Chem 1986; 261:4948–4955.PubMedGoogle Scholar
  75. 75.
    Sellers RD, Reventos J, Lillehei RC, Lillehei W. J Thoracic Cardiovasc Surg 1962; 44:14–20.Google Scholar
  76. 76.
    Urschel HC, Finney JW, Balla GA, Mallams JT. Surgical Forum 1964; 15:273–274.PubMedGoogle Scholar
  77. 77.
    Urschel HC, Morales AR, Finney JW, Balla GA, Race GJ, Mammals JT. Ann Thorac Surg 1966; 2:665–682.PubMedCrossRefGoogle Scholar
  78. 78.
    Olson RD, Boerth RC. Am J Physiol 1978; 3:H28–H34.Google Scholar
  79. 79.
    Forester GV, Taichman GC, Keon WJ. Can J Surg 1981; 24:227–231.PubMedGoogle Scholar
  80. 80.
    Shattock MJ, Manning AS, Hearse DJ. Pharmacology 1982; 24:118–122.PubMedCrossRefGoogle Scholar
  81. 81.
    Wendell PL. Biochem J 1970; 117: 661–665.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Ishikawa T, Sies H. J Biol Chem 1984; 259: 3838–3843.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • H. Fliss
    • 1
  • M. Masika
    • 1
  • D. W. Eley
    • 1
  • B. Korecky
    • 1
  1. 1.Dept. of Physiology, Faculty of Health SciencesUniversity of OttawaOttawaUSA

Personalised recommendations