Myocardial Effects of Partially Reduced Forms of Oxygen
- 1 Citations
- 45 Downloads
Abstract
Ground state oxygen (O2) is a diradical with two unpaired electrons having parallel spins in its outer orbit. This unique electronic configuration does limit reactivity of oxygen because inversion of spin is required for the oxidization of a two electron donor by oxygen (1). However, in vivo reduction of oxygen can occur rapidly when catalyzed by enzymes which are able to make complexes with O2 and electron donor substrate molecules (2) resulting in the formation of either water, (e.g. 4 electron reduction by cytochrome oxidase) or partially reduced forms of oxygen (PRFO) (e.g. reduction by xanthine oxidase and NADPH oxidase). These PRFO are highly reactive and can interact with unsaturated lipids to give rise to lipid peroxyradicals which can cause a fundamental change in the semipermeable characteristics of the membrane (3, 4).
Keywords
Xanthine Oxidase Creatine Phosphate Lanthanum Nitrate High Energy Phosphate Contraction BandPreview
Unable to display preview. Download preview PDF.
References
- 1.Green, M.J. and Hill, H.A.O. In: Methods in Enzymology (Ed. L. Packer) No. 105, Academic Press, New York, 1984, pp. 3–22.Google Scholar
- 2.Weiss, S.J. Acta. Physiol. Scand. 126 548 Suppl: 9–37, 1986.Google Scholar
- 3.Plaa, G.L. and Witsche, H. Ann. Rev. Pharmacol. 16: 125–141, 1976.CrossRefGoogle Scholar
- 4.Singal, P.K., Beamish, R.E. and Dhalla, N.S. Adv. Exp. Med. Biol. 161: 391–401, 1983.PubMedCrossRefGoogle Scholar
- 5.Petkau, A., Chelack, W.S. and Plekash, S.D. Life Sci. 22: 867–882, 1978.PubMedCrossRefGoogle Scholar
- 6.Granger, D.N., Rutili, G. and McCord, J.M. Gastroenter, 81: 22–29, 1981.Google Scholar
- 7.Fox, R.B., Harada, R.N., Tate, R.M. and Repine, J.E. J. Appl. Physiol. 55: 1456–1459, 1983.PubMedGoogle Scholar
- 8.Chambers, D.E., Parks, D.A., Patterson, G., Roy, R., McCord, J.M., Yoshida S., Parmley, L.F. and Dawney, J.M. J. Mol. Cell. Cardiol. 17: 145–152, 1985.PubMedCrossRefGoogle Scholar
- 9.Gauduel, Y. and Duvelleroy, M.A. J. Mol. Cell. Cardiol. 16: 459–470, 1984.PubMedCrossRefGoogle Scholar
- 10.Guarnieri, C, Flamigni, F. and Caldarera, CM. J. Mol. Cell. Cardiol. 12: 797–808, 1980.PubMedCrossRefGoogle Scholar
- 11.Hess, M.L., Manson, N.H. and Okabe, E. Can.J. Physiol. Pharmacol. 60: 1382–1389, 1981.CrossRefGoogle Scholar
- 12.Jolly, S.R., Kane, W.J., Bailie, M.D., Abrams, G.D. and Lucchesi, B.R. Circ. Res. 54: 277–285, 1984.PubMedCrossRefGoogle Scholar
- 13.Rowe, G.T., Manson, N.H., Caplan, M. and Hess, M.L. Circ. Res. 53: 584–591, 1983.PubMedCrossRefGoogle Scholar
- 14.Stewart, J.R., Blackwell, W.H., Crute S.L., Laughlin, V., Greenfield, L.J. and Hess, M.L. J. Thorac. Cardiovas. Surg. 86: 262–272, 1983.Google Scholar
- 15.Singal, P.K., Deally C.M.R. and Weinberg, L.E. J. Mol. Cell. Cardiol. 1987 (In Press).Google Scholar
- 16.Singal, P.K., Kapur, N., Beamish, R.E., Das, P.K. and Dhalla, N.S. In: Stress and Heart Disease (Eds. R.E. Beamish, P.K. Singal and N.S. Dhalla), Martinus Nijhoff, Boston, 1985, pp. 190–201.CrossRefGoogle Scholar
- 17.Singal, P.K., Kapur, N., Dhillon, K.S., Beamish, R.E. and Dhalla, N.S. Can. J. Physiol. Pharmacol. 60: 1390–1397, 1982.PubMedCrossRefGoogle Scholar
- 18.McCord, J.M. and Day, D.Jr. FEBS Lett 86: 139–142, 1978.PubMedCrossRefGoogle Scholar
- 19.Burton, K.P., McCord, J.M. and Ghai, G. Am. J. Physiol. 246: H776-H783, 1984.PubMedGoogle Scholar
- 20.Ytrehurs, K., Mykloebust, R. and Mijos, O.D. Cardiovas. Res. 20: 597–603, 1986.CrossRefGoogle Scholar
- 21.Gupta, M., Gameiro, A. and Singal, P.K. Can. J. Physiol. Pharmacol. 65, 1157–1164, 1987.PubMedCrossRefGoogle Scholar
- 22.Gupta, M. and Singal, P.K. Biochem. Pharmacol. 1987 (In Press).Google Scholar
- 23.Haber, F. and Weiss, J. Proc. Roy. Soc. Ser. A, 147: 332–351, 1934.CrossRefGoogle Scholar
- 24.Beauchamp, C. and Fridovich, I. J. Biol. Chem. 245: 4641–4646, 1970.Google Scholar
- 25.Blaustein, A.S., Schine, L., Brooks, W.W., Fanburg, B.L. and Bing, O.H.L. Am. J. Physiol. 250: H595-H599, 1986.PubMedGoogle Scholar
- 26.McCord, J.M. and Fridovich, I. J. Biol. Chem. 243: 5753–5760, 1968.Google Scholar
- 27.Halliwell, B. FEBS Lett. 92, 321–326, 1978.PubMedCrossRefGoogle Scholar
- 28.Editorial, Clinical Pharmacol. Therap. 10, 595–596, 1969.Google Scholar
- 29.Cooper, B., Bunn, H.F., Propper R.D., Nathan, D.G., Rosenthal, D.S. and Moloney, W.C. Am. J. Med. 63: 958–966, 1977.PubMedCrossRefGoogle Scholar
- 30.Singal, P.K., Dhillon, K.S., Beamish, R.E. and Dhalla, N.S. Lab. Invest. 44: 426–433, 1981.PubMedGoogle Scholar
- 31.Singal, P.K. and Dhalla, N.S. In: Methods in Studying Cardiac Membranes. Vol. II (Ed. Dhalla, N.S.) CRC Press Inc. Florida, 3–16, 1984.Google Scholar
- 32.Sellevold, O.F.M., Jynge, P. and Aarstad, K. J. Mol. Cell. Cardiol. 18: 517–527, 1986.PubMedCrossRefGoogle Scholar