Advertisement

Contrasting Features of Peroxide Metabolism in Heart and Liver

  • D. L. Tribble
  • F. G. Kennedy
  • D. P. Jones
Chapter
  • 45 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 86)

Abstract

Peroxides arise in the course of normal aerobic metabolism as products and by-products of various oxidases and in association with electron transfer reactions of hemoproteins, flavoproteins and other redox active molecules. Because peroxides are mediators of oxidative injury, cellular systems capable of detoxifying and eliminating these compounds are an essential feature of aerobic life. By the catalatic and peroxidatic activities of catalase, glutathione peroxidase, and other proteins present in mammalian cells, peroxides are effectively maintained at nontoxic levels under conditions of normal metabolism. However, in instances of enhanced peroxide production, such as occurs in association with the inflammatory response (1), the metabolism of redox cycling agents (2), and reoxygenation and reperfusion following periods of hypoxia and ischemia (3), cellular peroxide levels may exceed the capacity of these detoxication systems and result in oxidative injury and cell death. Under some conditions, such as hypoxia, the detoxication mechanisms are compromised so that even normal peroxide production can be toxic (4).

Keywords

Glutathione Peroxidase Oxidative Injury Heart Cell Aldehyde Oxidase Sulfite Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rowe, G.T., Manson, N.H., Caplan, M., Hess, M.L. Circ. Res. 53: 584–591, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Sata, T., Takeshige, K., Takayanagi, R., and Minakami, S. Biochem. Pharmacol. 32:13–19, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Gauduel, Y., and Duvelleroy, M.A. J. Mol. Cell. Cardiol. 16:459470, 1984.Google Scholar
  4. 4.
    Tribble, D.L., and Jones, D.P. Fed. Proc. 46:1942, 1987.Google Scholar
  5. 5.
    Oshino, N., Chance, B., Sies, H., and Bucher, T. Arch. Biochem. Biophys. 154:117–131, 1973.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones, D.P., Orrenius, S., and Mason, H.S. Biochim. Biophys. Acta. 576:17–29, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Kennedy, F.G., and Jones, D.P. Am. J. Physiol. 250: (Cell Physiol. 19):C374–C383, 1986.PubMedGoogle Scholar
  8. 8.
    Loschen, G., Azzi, A., Richter, C., and Flohe, L. FEBS Lett. 42:68–72, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Fridovich, I. Science 201:875–880, 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Chance, B., Sies, H., and Boveris, A. Physiol. Rev. 59:527–605, 1979.PubMedGoogle Scholar
  11. 11.
    Babior, B.M., and Peters, W.A. J. Biol. Chem. 256:2321–2323, 1981.PubMedGoogle Scholar
  12. 12.
    Fridovich, I. J. Biol. Chem. 245:4053–4057, 1970.PubMedGoogle Scholar
  13. 13.
    Misra, H.P., and Fridovich, I. J. Biol. Chem. 247:188–192, 1972.PubMedGoogle Scholar
  14. 14.
    DiGuiseppi, J., and Fridovich, I. CRC Crit. Rev. Toxicol. 12: 315–342, 1984.CrossRefGoogle Scholar
  15. 15.
    Jones, D.P., Thor, H., Andersson, B., and Orrenius, S. J. Biol. Chem. 253:6031–6037, 1978.Google Scholar
  16. 16.
    Herzog, V., and Fahimi, H.D. Science 185:271–273, 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    Boveris, A., Oshino, N., and Chance, B. Biochem. J. 128:617–630, 1972.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Hildebrandt, A.G., and Roots, I. Arch. Biochem. Biophys. 171: 385–397, 1975.CrossRefGoogle Scholar
  19. 19.
    Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O.M. Arch. Biochem. Biophys. 180:248–257, 1977.PubMedCrossRefGoogle Scholar
  20. 20.
    Weiss, S.J., Young, J., LoBuglio, A.F., Slivka, A., Nimeh, N.F. J. Clin. Invest. 68:714–721, 1981.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Jones, D.P. In: Oxidative Stress (Ed. H. Sies), Academic Press, New York, 1985, 151–195.CrossRefGoogle Scholar
  22. 22.
    Wenger, N.K., Abelmann, W.H., and Roberts, W.C. In: The Heart (Eds. J. W. Hurst, et. al.), McGraw-Hill, New York, 1982, pp. 1278–1299.Google Scholar
  23. 23.
    Levi, R., Burke, J.A., and Corey, E.J. In: Leukotrienes and Other Lipoxygenase Products. (Eds. D. Samuelsson, and R. Paoletti), Raven Pres, New York, 1982, pp. 215–222.Google Scholar
  24. 24.
    Borgeat, P. and Samuelsson, B. Proc. Natl. Aca. Sci. U.S.A. 76: 3213–3217, 1979.CrossRefGoogle Scholar
  25. 25.
    Hamberg, M., and Samuelsson, B. Proc. Natl. Aca. Sci. U.S.A. 71:3400–3404, 1974.CrossRefGoogle Scholar
  26. 26.
    Willis, R.J. Fed. Proc. 39;3131–3137, 1979.Google Scholar
  27. 27.
    Tribble, D.L., Aw, T.Y., and Jones, D.P. Hepatology 7:377–387, 1987.PubMedCrossRefGoogle Scholar
  28. 28.
    Myers, C.E., McGuire, W.P., Liss, R.H., Grotzinger, K., and Young, R.G. Science 200:165–173, 1977.CrossRefGoogle Scholar
  29. 29.
    Kaplan-Bresler, A. J. Gen. Physiol. 48:685–698, 1965.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hagler, L., Coppes, R.I., Askew, E.W., Hecker, A.L., and Herman, R.H. J. Lab. Clin. Med. 95:222–230, 1980.PubMedGoogle Scholar
  31. 31.
    Wallace, W.J., Houtchens, R.A., Maxwell, J.C., and Caughey, W.S. J. Biol. Chem. 257:4966–4977, 1982.PubMedGoogle Scholar
  32. 32.
    Thayer, W.S. Chem.-Biol. Interact. 19:265–278, 1977.PubMedCrossRefGoogle Scholar
  33. 33.
    Lawrence, R.A., and Burk, R.F. J. Nutr. 108:211–215, 1978.PubMedGoogle Scholar
  34. 34.
    Ishikawa, T., and Sies, H. J. Biol. Chem. 259:3838–3843, 1984.PubMedGoogle Scholar
  35. 35.
    Mize, C.E., and Langdon, R.G. J. Biol. Chem. 237:1589–1595, 1962.PubMedGoogle Scholar
  36. 36.
    Bartoli, G.M., and Sies, H. FEBS Lett. 86:89–91, 1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Aw, T.Y., Ookhtens, M., and Kaplowitz, N. Am. J. Physiol. 251: G354-G361, 1986.PubMedGoogle Scholar
  38. 38.
    Sies, H., Wahllander, A., and Waydhas, C In: Functions of Glutathione in Liver and Kidney (Eds. H. Sies and A. Wendel) Springer-Verlag, Berlin, 1978, pp. 120–126.CrossRefGoogle Scholar
  39. 39.
    Sies, H., and Summer, K.-H. Eur. J. Biochem. 57:503–512, 1975.PubMedCrossRefGoogle Scholar
  40. 40.
    Lauterburg, B.H., Adams, J.D. and Mitchell, J.R. Hepatology 4:586–590, 1984.PubMedCrossRefGoogle Scholar
  41. 41.
    Chasseaud, L.F. In: Extrahepatic Metabolism of Drugs and Other Foreign Compounds (Ed. T. E. Gram) Spectrum Publications, Jamaica, NY, 1980, pp. 427–452.Google Scholar
  42. 42.
    Akerboom, T.P.M., and Sies, H. Meth. Enzymol. 77:373–382, 1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Jones, D.P. and Kennedy, F.G. Biochem. Biophys. Res. Commun. 105:419–424, 1982.PubMedCrossRefGoogle Scholar
  44. 44.
    Jones, D.P. Arch. Biochem. Biophys. 214:806–814, 1982.PubMedCrossRefGoogle Scholar
  45. 45.
    Jones, D.P., and Kennedy, F.G. In: Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects. (Eds. A. Larsson et. al.), Raven Pres, New York, 1983, pp. 109–116.Google Scholar
  46. 46.
    Keilin, D. and Hartree, E.F. Nature 166:513–514, 1950.PubMedCrossRefGoogle Scholar
  47. 47.
    Kerckaert, I., and Roels, F. Basic Res. Cardiol. 81:83–91, 1986.PubMedCrossRefGoogle Scholar
  48. 48.
    Margoliash, E., Novegrodsky, A., and Scheijter, A. Biochem. J. 74:339–350, 1960.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Thayer, W.S. FEBS Lett. 202:131–140, 1986.CrossRefGoogle Scholar
  50. 50.
    George, P. and Irvine, D.H. J. Am. Chem. Soc. 63:415–419, 1959.Google Scholar
  51. 51.
    Wendel, A. In: Enzymatic Basis of Detoxication, Vol. I. (Ed. W. B. Jakoby) Academic Press, New York, 1980, pp. 333–353.Google Scholar
  52. 52.
    Schonbaum, G.R., and Chance, B. In: The Enzymes, Vol. XIII, 3rd Ed., (Eds. P. Boyer et. al.), Academic Press, New York, 1976, pp. 363–408.CrossRefGoogle Scholar
  53. 53.
    Prohaska, J.R., Ganther, H.E. Biochem. Biophys. Res. Commun. 76:437–445,1977.CrossRefGoogle Scholar
  54. 54.
    Zimmer, H.-G., Bunger, R., Koschine, H., and Steinkopff, G. J. Mol. Cell. Cardiol. 13:531–535, 1981.PubMedCrossRefGoogle Scholar
  55. 55.
    De Duve, C. J. Histochem. Cytochem. 21:941–948, 1973.CrossRefGoogle Scholar
  56. 56.
    Flohe, L. and Schlegel, W. Hoppe-Seylers’s Z. Physiol. Chem. 352:1401–1410, 1971.CrossRefGoogle Scholar
  57. 57.
    Jones, D.P., Eklow, L., Thor, H., and Orrenius, S. Arch. Biochem. Biophys. 210:505–516, 1981.PubMedCrossRefGoogle Scholar
  58. 58.
    Kaplowitz, N., Aw, T.Y. and Ookhtens, M. Ann. Rev. Pharmacol. Toxicol. 25:715–744, 1985.CrossRefGoogle Scholar
  59. 59.
    Sies, H. and Graf, P. Biochem. J. 226:545–549, 1985.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Lash, L.H. and Jones, D.P. J. Biol. Chem. 259:14508–14514, 1984.PubMedGoogle Scholar
  61. 61.
    Lash, L.H., Hagen, T.M., and Jones, D.P. Proc. Natl. Acad. Sci. USA 83:4641–4645, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Hagen, T.M., Brown, L.A., and Jones, D.P. Biochem. Pharmacol. 35:4537–4542, 1986.PubMedCrossRefGoogle Scholar
  63. 63.
    Hagen, T.M., Hartmann, J.N., Jones, D.P., and Sternberg, P. Invest. Ophthalmol. Vis. Sci. 28 (Suppl.):255, 1987.Google Scholar
  64. 64.
    Eggleston, L.V. and Krebs, H.A. Biochem. J. 138:425–435, 1974.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Fabregat, I., Victorica, J., Satrustequi, and Machado, A. Arch. Biochem. Biophys. 236:110–118, 1985.PubMedCrossRefGoogle Scholar
  66. 66.
    Inoue, M., Kinne, R., Tran, T., Arias, I.M. Eur. J. Biochem. 138:491–495, 1984.PubMedCrossRefGoogle Scholar
  67. 67.
    Ishikawa, T., Zimmer, M., and Sies, H. FEBS Lett. 200:128–132.Google Scholar
  68. 68.
    Ishikawa, T., Esterbauer, H., and Sies, H. J. Biol. Chem. 261: 1576–1581, 1986.Google Scholar
  69. 69.
    Schulte-Frohlinde, D., and Von Sonntag, C. In: Oxidative Stress (Ed. H. Sies), Academic Press, London, 1985, pp. 11–40.CrossRefGoogle Scholar
  70. 70.
    Webb, J.L. In: Enzyme and Metabolic Inhibitors, Vol. 2 (Ed. J. L. Webb), Academic Press, New York, 1965, pp. 635–653.Google Scholar
  71. 71.
    Webb, J.L. In: Enzyme and Metabolic Inhibitors, Vol. 3 (Ed. J. L. Webb), Academic Press, New York, 1966, pp. 1–283, 337–365, 595–819.Google Scholar
  72. 72.
    Walters, F., Kennedy, F.G., and Jones, D.P. FEBS Lett. 163: 292–296, 1983.PubMedCrossRefGoogle Scholar
  73. 73.
    Gilbert, H.F. J. Biol. Chem. 257:12086–12091, 1982.PubMedGoogle Scholar
  74. 74.
    Jones, D.P., Thor, H., Smith, M.T., Jewell, S.A., Orrenius, S. J. Biol. Chem. 258:6390–6393, 1983.PubMedGoogle Scholar
  75. 75.
    Nicotera, P., Moore, M., Mirabelli, F., Bellomo, G., and Orrenius, S. FEBS Lett. 181:149–153, 1985.PubMedCrossRefGoogle Scholar
  76. 76.
    Sevanian, A. and Hochstein, P. Ann. Rev. Nutr. 5:365–390, 1985.CrossRefGoogle Scholar
  77. 77.
    Hoffmann, M.E., Mello-Filho, A.C., Meneghini, R. Biochim. Biophys. Acta. 781:235–238, 1984.Google Scholar
  78. 78.
    Sies, H., and Chance, B. FEBS Lett. 11:172–176, 1970.PubMedCrossRefGoogle Scholar
  79. 79.
    Richter, C, Frei, B., and Cerruti, P.A. Biochem. Biophys. Res. Commun. 143:609–616, 1987.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • D. L. Tribble
    • 1
  • F. G. Kennedy
    • 1
  • D. P. Jones
    • 1
  1. 1.Department of BiochemistryEmory University School of MedicineAtlantaUSA

Personalised recommendations