Advertisement

Anthracycline-Enhanced Cardiac Oxygen Radical Metabolism

  • J. H. Doroshow
Chapter
  • 45 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 86)

Abstract

The anthracycline quinones play an important role in the chemotherapeutic management of a wide variety of human malignancies including acute myelogenous and lymphocytic leukemias, the non-Hodgkin’s lymphomas, and carcinomas of the breast, lung, and thyroid (1). The clinical usefulness of these drugs may be limited, however, by the development of a dose-related, congestive cardiomyopathy that is sometimes fatal (2). There is currently a substantial body of experimental data supporting the hypothesis that the myocardial injury produced by anthracycline antibiotics is related to drug-induced reactive oxygen production in the heart (3–6). These investigations include studies which show that the morphologic expression of doxorubicin cardiac toxicity may be enhanced by inhibition of cardiac antioxidant defense systems; that damage to the heart may be reduced or abolished by pretreatment of experimental animals with various free radical scavengers; and that cyclical reduction and oxidation of the doxorubicin quinone leads to the depletion of critical cardiac energy stores, as well as to the inability of intact myocytes to maintain calcium homeostasis (7–10).

Keywords

Redox Cycling Hydroxyl Radical Production Hydroxyl Radical Formation Superoxide Anion Formation Anthracycline Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young, R.C., Ozols, R.F. and Myers, C.E. N. Eng. J. Med. 305: 139–153, 1981.CrossRefGoogle Scholar
  2. 2.
    Lenaz, L. and Page, J. Cancer Treat. Rev. 3: 111–120, 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Thayer, W.S. Chem.-Biol. Interact. 19: 265–278, 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Bachur, N.R., Gordon, S.L. and Gee, M.W. Mol. Pharmacol. 13: 901–910, 1977.PubMedGoogle Scholar
  5. 5.
    Revis, N.W. and Marusic, N. J. Mol. Cell. Cardiol. 10: 945–951, 1978.CrossRefGoogle Scholar
  6. 6.
    Myers, C.E., McGuire, W.P., Liss, R.H., Ifrim, I., Grotzinger, K. and Young, R.C. Science 197: 165–167, 1977.PubMedCrossRefGoogle Scholar
  7. 7.
    Doroshow, J.H., Locker, G.Y. and Myers, C.E. J. Clin. Invest. 65: 128–135, 1980.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Doroshow, J.H., Locker, G.Y., Ifrim, I. and Myers, C.E. J. Clin. Invest. 68: 1058–1064, 1981.CrossRefGoogle Scholar
  9. 9.
    Davies, K.J.A., Doroshow, J.H. and Hochstein, P. FEBS Lett. 153: 227–230, 1983.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris, R.N. and Doroshow, J.H. Biochem. Biophys. Res. Commun. 130: 739–745, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Iyanagi, T. and Yamazaki, I. Biochem. Biophys. Acta 216: 282–294, 1970.PubMedGoogle Scholar
  12. 12.
    Handa, K. and Sato, S. Gann 66: 43–47, 1975.PubMedGoogle Scholar
  13. 13.
    Goodman, J. and Hochstein, P. Biochem. Biophys. Res. Comm. 77: 797–803, 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    Lown, J.W., Sim, S.-K., Majumdar, K.C., et a1. Biochem. Biophys. Res. Commun. 76: 705–710, 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Bachur, N.R., Gordon, S.L. and Gee, M.V. Cancer Res. 38: 1745–1750, 1978.PubMedGoogle Scholar
  16. 16.
    Olson, R., MacDonald J., Van Boxtel, C, et al. J. Pharmacol. Exp. Ther. 215: 450–454, 1980.PubMedGoogle Scholar
  17. 17.
    Fujita, K., Shimpo, K., Yamada, K., et al. Cancer Res. 42: 309–316, 1982.PubMedGoogle Scholar
  18. 18.
    Doroshow, J.H. and Schechter, J. In: Superoxide and Superoxide Dismutase in Chemistry, Biology, and Medicine (Ed. G. Rotilio), Elsevier Science Publishers, Amsterdam 1986, pp. 639–641.Google Scholar
  19. 19.
    Herman, E. and Ferrans, V. Cancer Res. 41: 3436–3440, 1981.PubMedGoogle Scholar
  20. 20.
    Green, M.D., Speyer, J.L., Stecy, P., et al. Proc. Amer. Soc. Clin. Oncol. 6: 104, 1987.Google Scholar
  21. 21.
    Davies, K.J.A. and Doroshow, J.H. J. Biol. Chem. 261: 3060–3067, 1986.PubMedGoogle Scholar
  22. 22.
    Doroshow, J.H. and Davies, K.J.A. J. Biol. Chem. 261: 3068–3074, 1986.PubMedGoogle Scholar
  23. 23.
    Doroshow, J.H. Cancer Res. 43: 460–472, 1983.PubMedGoogle Scholar
  24. 24.
    Ferrans, V.J. Cancer Treat. Rep. 62: 955–961, 1978.PubMedGoogle Scholar
  25. 25.
    Doroshow, J.H. Proc. Amer. Assoc. Cancer Res. 24: 255, 1983.Google Scholar
  26. 26.
    Doroshow, J.H. Proc. Amer. Assoc. Cancer Res. 28: 262, 1987.Google Scholar
  27. 27.
    Doroshow, J.H. Proc. Amer. Assoc. Cancer Res. 27: 250, 1986.Google Scholar
  28. 28.
    Page, E. and McCallister, L.P. Am. J. Cardiol. 31: 172–181, 1973.PubMedCrossRefGoogle Scholar
  29. 29.
    Harris, E.J., Booth, R. and Cooper, M.B. FEBS Lett. 146: 267–270, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor, D. and Hochstein, P. Biochem. Pharmacol. 27: 2079–2082, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • J. H. Doroshow
    • 1
  1. 1.Department of Medical Oncology and Therapeutics ResearchCity of Hope Cancer Research CenterDuarteUSA

Personalised recommendations