Advertisement

Biological Systems Which Suppress Lipid Peroxidation

  • Paul B. McCay
  • Edward K. Lai
  • Donald D. Gibson
  • J. Lee Poyer
  • Saul R. Powell
  • Gemma Brueggemann
Chapter
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 86)

Abstract

Cell metabolism and the environmental factors in general place animal tissues at chronic risk of oxidative alteration of membrane lipids and other components. Several oxidation-reduction enzymes in subcellular organelles are capable of initiating lipid peroxidation in those organelles in vitro. For example, the synthesis of ascorbic acid from gulonolactone by gulonolactone oxidase causes a peroxidative degradation of membrane phospholipids in liver microsomes (1). Oxidation of NADPH by both liver microsomes (2) and liver mitochondria (3) results in lipid peroxidation also. The metabolism of some xenobiotic compounds by the drug metabolizing system is also capable of promoting oxidative degradation of both membrane lipids and proteins (4–6). In addition, radiation, airborne chemicals, ozone, and water pollutants may also produce oxidative damage to tissue.

Keywords

Electron Spin Resonance Carbon Tetrachloride Liver Microsome Microsomal Membrane Hepatic Microsome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitabchi, A.E., McCay, P.B., Carpenter, M.P., Trucco, R.E. and Caputto, R. (1960) J. Biol. Chem. 235,1591–1598.PubMedGoogle Scholar
  2. 2.
    May, H.E. and McCay, P.B. (1966) J. Biol. Chem. 243,2288–2295.Google Scholar
  3. 3.
    Pfeifer, P.M. and McCay, P.B. (1972) J. Biol. Chem. 247,6763–6769.PubMedGoogle Scholar
  4. 4.
    Slater, T.F. (1984) Biochem. J. 222,1–15.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Mitchell, J.R., Hughes, H., Lauterburg, B.H. and Smith, C.V. (1982) Drug Metab. Rev. 13(4),539–553.PubMedCrossRefGoogle Scholar
  6. 6.
    Clark, I.A. (1986) Pathology. 18,181–186.PubMedCrossRefGoogle Scholar
  7. 7.
    Halliwell, B. and Gutteridge, J.M. (1986) Arch. Biochem. Biophys. 246,501–514.PubMedCrossRefGoogle Scholar
  8. 8.
    Jamieson, D., Chance, B., Cadenas, E. and Boveris, A. (1986) Annu. Rev. Physiol. 48,703–719.PubMedCrossRefGoogle Scholar
  9. 9.
    Suttorp, N. and Simon, L.M. (1986) Biochem. Pharmacol. 35,2268–2270.PubMedCrossRefGoogle Scholar
  10. 10.
    Comporti, M. (1985) Lab. Invest. 53,599–623.PubMedGoogle Scholar
  11. 11.
    Arrigoni-Martelli, E. (1985) Int. J. Tissue React. 7,513–519.PubMedGoogle Scholar
  12. 12.
    McCay, P.B. and Gibson, D.D. (1982) Lipid Peroxides in Biology and Medicine(Yagi, K., eds) pp. 179–197. Academic Press, NYGoogle Scholar
  13. 13.
    Singal, P.K. and Pierce, G.N. (1986) Am. J. Physiol. 250(3 Pt 2),H419-H425.PubMedGoogle Scholar
  14. 14.
    Gibson, D.D., Hawrylko, J. and McCay, P.B. (1985) Lipids 20,704–711.PubMedCrossRefGoogle Scholar
  15. 15.
    Ursini, F.. Maiorino, M., Valente, M., Ferri, L. and Gregolin, C. (1982) Biochim. Biophys. Acta 710,197–211.PubMedCrossRefGoogle Scholar
  16. 16.
    Ursini, F., Maiorino, M. and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62–70.PubMedCrossRefGoogle Scholar
  17. 17.
    McCay, P.B., Gibson, D.D., Fong, K-L. and Hornbrook, K.R. (1976) Biochim. Biophys. Acta 431, 459–468.CrossRefGoogle Scholar
  18. 18.
    Gibson, D.D., Hornbrook, K.R. and McCay, P.B. (1980) Biochim. Biophys. Acta 620,572–582.PubMedCrossRefGoogle Scholar
  19. 19.
    Chvapil, M., Sipes, I.G., Ludwig, J.C. and Halladay, S.C. (1974) Biochem. Pharmacol. 24,917–919.CrossRefGoogle Scholar
  20. 20.
    McCay, P.B. (1966) J. Biol. Chem. 241, 2333–2339.PubMedGoogle Scholar
  21. 21.
    Kosower, N.S. and Kosower, E.M. (1978) International Review of Cytology 54, 109–160.PubMedCrossRefGoogle Scholar
  22. 22.
    Willmore, L.J., Hiramatsu, M., Kochi, H. and Mori, A. (1983) Brain Research 109–160.Google Scholar
  23. 23.
    Valenzuela, A., Fernandez, V. and Videla, L.A. (1983) Toxicol. Appl. Pharmacol. 70,87–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Burk, R.F. (1982) Biochem. Pharmacol. 31, 601–602.PubMedCrossRefGoogle Scholar
  25. 25.
    Burk, R.F., Patel, K. and Lane, J.M. (1983) Biochem. J. 215, 441–445.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Poyer, J.L., McCay, P.B., Lai, E.K., Janzen, E.G. and Davis, E.R. (1980) Biochem. Biophys. Res. Commun. 94,1154–1160.PubMedCrossRefGoogle Scholar
  27. 27.
    Reddy, C.C., Scholz, R.W., Thomas, C.E. and Massaro, E.J. (1982) Life Sci. 31,571–576.PubMedCrossRefGoogle Scholar
  28. 28.
    Hill, K.E. and Burk, R.F. (1984) Biochem. Pharmacol. 33, 1065–1068.PubMedCrossRefGoogle Scholar
  29. 29.
    McCay, P.B., Lai, E.K., Brueggemann, G. and Powell, S.R. (1986) NATO Advanced Research Workshop on “Advanced Technologies and Their Nutritional Implications in the Production of Edible Fats”. Plenum Press, New YorkGoogle Scholar
  30. 30.
    McCay, P.B., Lai, E.K., Poyer, J.L., DuBose, CM. and Janzen, E.G. (1984) J. Biol. Chem. 259,2135–2143.PubMedGoogle Scholar
  31. 31.
    Lai, E.K., McCay, P.B., Noguchi, T. and Fong, K-L. (1979) Biochem. Pharmacol. 28,2231–2235.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Paul B. McCay
    • 1
  • Edward K. Lai
    • 1
  • Donald D. Gibson
    • 1
  • J. Lee Poyer
    • 1
  • Saul R. Powell
    • 1
  • Gemma Brueggemann
    • 1
  1. 1.Molecular Toxicology ProgramOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations