The Measurement of Conjugated Dienes in Ischemic and Reperfused Myocardium
- 54 Downloads
Abstract
When we began toying with the idea of attempting to measure a chemical marker in myocardium which was indicative of oxygen free radical attack or oxidative stress a variety of analytical options were open to us. These included a) spin trapping primary species such as superoxide and hydroxyl radicals or other secondary radical species(1) b) assay of malonyldialdehyde either with thiobarbituric acid or by direct HPLC spectrophotometric analysis(2) c) assay of lipid hydroperoxide species by fluorescent or luminescent assays(3) d) measurement of pentanes and ethanes(4) e) detection of water soluble polyunsaturated fatty acid oxidation and fragmentation products (ie. hydroxyalkenals) (5) f) detecting a decrease in protein or peptide sulfhydryl redox state (6) g) measuring amino acid oxidation in protein (7) h) conjugated diene formation (8) i) chemiluminescent light emission due to the formation of activated oxygen species (9). Clearly at least two major molecular components of cells were demonstrably susceptible to oxidative attack by free radical species; namely polyunsaturated fatty acyl moeities of phospholipid and sulfur containing amino acid residues in protein. Other amino acids have also been shown to be susceptible to free radical and oxidative attack (tyrosine, histidine, etc.) (10).
Keywords
Oxidative Attack Conjugate Diene Formation HPLC Eluate Phospholipid Peroxidation Irreversible ModelPreview
Unable to display preview. Download preview PDF.
References
- 1.Floyd, R.A. and Zaleska, M. In: Oxygen Radicals in Chemistry and Biology (Eds. W. Bors, M. Saran, D. Tait) W. deGruyter Publ. Berlin, 1984, pp. 285–297.Google Scholar
- 2.Dahle, L.K., Hill, E.G. and Holman, R.T. Arch. Biochem. 98: 253–260, 1962.PubMedCrossRefGoogle Scholar
- 3.Cathcart, R., Schiviers, E., Ames, B.N. Anal. Biochem. 134: 111–116, 1983.PubMedCrossRefGoogle Scholar
- 4.Frankel, E.N. Prog. Lipid Res. 22: 1–33, 1982.CrossRefGoogle Scholar
- 5.Poli, G., Dianzani, M.U., Cheeseman, K.H., Slater, T.F., Lang, J. and Esterbauer, H. Biochem. J. 227; 629–638, 1985.PubMedCentralPubMedGoogle Scholar
- 6.Sies, H. In: Oxidative Stress (Ed. Sies H.) Academic Press, London, 1985, pp. 73–88.CrossRefGoogle Scholar
- 7.Fliss, H., Weissbach, H. and Brot, N. Proc. Natl. Acad. Sci. USA 80: 7160–7164, 1983.PubMedCentralPubMedCrossRefGoogle Scholar
- 8.Shenstone, F.S. In: Biochemistry and Methodology of Lipids (Eds. A.R. Johnson and J.B. Davenport) Wiley Interscience, New York, 1971, pp. 219–230.Google Scholar
- 9.Noll, T., De Groot, H. and Sies, H. Arch. Biochem. Biophys. 252: 284–291, 1987.CrossRefGoogle Scholar
- 10.Weiss, S.J. Acta Physiol. Scand. 548 (Suppl): 9–37, 1986.Google Scholar
- 11.Porter, N.A. Methods in Enzymology 105: 273–282, 1984.PubMedCrossRefGoogle Scholar
- 12.Hubbard, W.C., Hough, A.J., Brash, A.R., Watson, J.T. and Oates, J.A. Prostaglandins 20 (3): 431–447, 1980.PubMedCrossRefGoogle Scholar
- 13.Kagan, V.E., Arkhipenko, Yu.V., Ritov, V.B. and Kozlov, Yu, P. Biochemistry USSR 48(2): 320–330, 1983.Google Scholar
- 14.Recknagel, R.O. and Ghosal, A.K. Lab. Invest. 15: 132–137, 1966.PubMedGoogle Scholar
- 15.Hughes, H., Smith, C.V., Horning, E.C. and Mitchell, J.R. Anal. Biochem. 130: 431–436, 1983.PubMedCrossRefGoogle Scholar
- 16.Slater, T.F. Biochem. J. 222: 1–15, 1984.PubMedCentralPubMedGoogle Scholar
- 17.Kuehl, F.A., Humes, J., Torchiana, M.L. Adv. Inflam. Res. 1: 419–430, 1979.Google Scholar
- 18.Kappus, H. In: Oxidative Stress (Ed. H. Sies) Academic Press, London, 1985, pp. 273–303.CrossRefGoogle Scholar
- 19.Terao, J., Asano, I., Matsushita, S. Arch. Biochem. Biophys. 235: 326–333, 1984.PubMedCrossRefGoogle Scholar
- 20.Waller, R.L. and Recknagel, R.O. Lipids 12(11): 914–921, 1977.PubMedCrossRefGoogle Scholar
- 21.Romaschin, A.D., Rebeyka, I., Wilson, G.J. and Mickle, D.A.G. J. Molec. Cell. Cardiol. 19: 289–302, 1987.CrossRefGoogle Scholar
- 22.Feindel, G.M., Tait, G.A., Wilson, G.J., Klement, P. and MacGregor, D.C. J. Thorac. Cardiovasc. Surg. 87: 585–595, 1986.Google Scholar
- 23.Folch, J., Lees, M., Stanley, G.H.S. J. Biol. Chem. 226: 497–509, 1957.PubMedGoogle Scholar
- 24.Rapundalo, S.T., Briggs, F.N. and Feher, J.J. J. Molec. Cell. Cardiol. 18: 837–851, 1986.CrossRefGoogle Scholar
- 25.Palmer, J.W., Tandler, B., Hoppel, C.L. J. Biol. Chem. 252: 8731–8739, 1977.PubMedGoogle Scholar
- 26.Jones, L.R., Maddock, S.W., Besch, H.R. J. Biol. Chem. 255(20): 9971–9980, 1980.PubMedGoogle Scholar
- 27.Krause, S. and Hess, M.L. Circ. Res. 55: 176–184, 1984.PubMedCrossRefGoogle Scholar
- 28.Rao, P.S. and Mueller, H.S. Adv. Exp. Med. Biol. 161: 347–363, 1983.PubMedCrossRefGoogle Scholar
- 29.Jarasch, E.-D., Bruder, G. and Heid, H.W. Acta Physiol. Scand. 126 (Suppl. 548): 39–46, 1986.CrossRefGoogle Scholar
- 30.Ward, P.A., Johnson, K.J., Till, G.O. Acta Physiol. Scand. 126 (Suppl. 548): 79–85, 1986.Google Scholar
- 31.Au, A.M., Chan, P.H. and Fishman, R.A. J. Cell. Biochem. 27: 449–453, 1985.PubMedCrossRefGoogle Scholar
- 32.Wu, G.S., Stein, R., Mead, J.F. Lipids 17: 1403–1413, 1982.CrossRefGoogle Scholar
- 33.Jolly, S.R., Kane, W.J., Baillie, M.B., Abrams, G.D., Lucchesi, B.R. Circ. Res. 54: 277–285, 1984.PubMedCrossRefGoogle Scholar
- 34.Chambers, D.E., Parks, D.A., Patterson, G., Roy, R., McCord, J.M., Yoshida, S., Parmley, L.F. and Downey, J.M. J. Molec. Cell. Cardiol. 17: 145–152, 1985.CrossRefGoogle Scholar
- 35.Myers, M.L., Bolli, R., Lekich, R., Hartley, C.J., Roberts, R. Circulation 72: 915–921, 1985.PubMedCrossRefGoogle Scholar
- 36.Scherer, N.M. and Deamer, D.W. Arch. Biochem. Biophys. 246(2): 589–601, 1986.PubMedCrossRefGoogle Scholar