Advertisement

The Biology of Oxygen Radicals: Threats and Defenses

  • Irwin Fridovich
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 86)

Abstract

Ground state dioxygen is predisposed to reduction by a univalent pathway which entails the formation of the reactive intermediates O2 -, H2O2, and HO·. These species are produced during the passage of ionizing radiation through aerated aqueous solutions. Indeed, the superoxide radical (O2 -) and the hydroxyl radical (HO·) were first identified by radiation chemists and have been extensively studied by the technique of pulse radiolysis (1,2).

Keywords

Lactobacillus Plantarum Pulse Radiolysis Alkyl Hydroperoxide Aerate Aqueous Solution Xanthine Oxidase Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czapski, G. Ann. Rev. Phys. Chem. 22: 171–208, 1971.CrossRefGoogle Scholar
  2. 2.
    Czapski, G. Meth. Enzymol. 105: 209–214, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Babior, B. Blood 64: 959–966, 1984.PubMedGoogle Scholar
  4. 4.
    Samuni, A., Chevion, M., and Czapski, G. Radiat. Res. 99: 562–572, 1984.PubMedCrossRefGoogle Scholar
  5. 5.
    Girotti, A. W., and Thomas, J.P. Biochem. Biophys. Res. Commun. 118: 474–480, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Mello Filho, A. C, and Meneghini, R. Biochim. Biophys. Acta 781: 56–63, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Gutteridge, J. M. Biochem. J. 224: 761–767, 1984.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Fridovich, I. Arch Biochem Biophys 247: 1–11, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Hodgson, E. K., and Fridovich, I. Arch Biochem Biophys. 172: 202–205, 1976.PubMedCrossRefGoogle Scholar
  10. 10.
    Nagano, T., and Fridovich, I. Photochem. Photobiol. 41: 33–37, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Puget, K., and Michelson, A. M. Biochem. Biophys. Res. Commun. 58: 830–838, 1974.PubMedCrossRefGoogle Scholar
  12. 12.
    Steffens, G. J., Bannister, J. V., Bannister, W. H., Flohe, L., Gunzler, W. A., Kim, S. M., and Otting, F. Hoppe Seylers Z. Physiol. Chem. 364: 675–690, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Dunlop, P. V., and Steinman, H. M. J. Bacteriol. 165: 393–398, 1986.Google Scholar
  14. 14.
    Steinman, H. M. J. Biol. Chem. 257: 10283–10293, 1982.Google Scholar
  15. 15.
    Steinman, H. M. J. Bacteriol. 162: 1255–1260, 1985.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Marklund, S. L. Proc. Nat. Acad. Sci., USA 79: 7634–7638, 1982.CrossRefGoogle Scholar
  17. 17.
    Steinman, H. M. In: Superoxide Dismutase (Ed. L. W. Oberley), CRC Press, Boca Raton, Fla., 1982, pp. 11–68.Google Scholar
  18. 18.
    Moody, C. S., and Hassan, H. M. J. Biol. Chem. 259: 12821–12825, 1984.Google Scholar
  19. 19.
    Archibald, F. S., and Fridovich, I. J. Bacteriol. 146: 928–936, 1981.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Lynch, R. E., and Cole, B. C. Biochim. Biophys. Res. Commun. 96: 98–105, 1980.CrossRefGoogle Scholar
  21. 21.
    Archibald, F. S., and Duong, M. N. Infect. Immun. 51: 631–641, 1986.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Archibald, F. S., and Fridovich, I. J. Bacteriol. 145: 442–451, 1981.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Odajima, T., and Yamazaki, I. Biochim. Biophys. Acta 284: 355–359, 1972PubMedCrossRefGoogle Scholar
  24. 24.
    Rister, M., and Baehner, R. L. J. Clin. Invest. 58: 1174–1184.Google Scholar
  25. 25.
    Kono, Y., and Fridovich, I. J. Biol. Chem. 257: 5751–5754, 1982.Google Scholar
  26. 26.
    Kono, Y., and Fridovich, I. J. Biol. Chem. 258: 13646–13648, 1983.Google Scholar
  27. 27.
    Blum, J., and Fridovich, I. Arch. Biochem. Biophys. 240: 500–508, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Aust, S. D., and White, B. C. Adv. Free Rad. Biol. Med. 1: 1–17, 1985.CrossRefGoogle Scholar
  29. 29.
    Bielski, B. H. J., Arudi, R. L., and Sutherland, M. W. J. Biol. Chem. 258: 4759–4761, 1983.Google Scholar
  30. 30.
    Mashino, T., and Fridovich, I. Arch. Biochem. Biophys. 254: in press, 1987.Google Scholar
  31. 31.
    Green, S., and Mazur, A. J. Biol. Chem. 227: 653–658, 1957.Google Scholar
  32. 32.
    Williams, D. M., Lee, G. R., and Cartwright, G. E. J. Clin. Invest. 53: 665–667, 1974.CrossRefGoogle Scholar
  33. 33.
    Biemond, P., van Fijt, H. G., Swaak, A. J., and Koster, J. F. J. Clin. Invest. 73: 1576–1579, 1984.CrossRefGoogle Scholar
  34. 34.
    Thomas, C. E., and Aust, S. D. J. Free Rad Biol. Med. 1: 293–300, 1985.CrossRefGoogle Scholar
  35. 35.
    Darr, D., and Fridovich, I. Arch. Biochem. Biophys. 232: 562–565, 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Liochev, S., and Fridovich, I. J. Free Rad. Biol. Med. 1: 287–292, 1986.CrossRefGoogle Scholar
  37. 37.
    Liochev, S., and Fridovich, I. Arch. Biochem. Biophys. 250: 139–145, 1986.PubMedCrossRefGoogle Scholar
  38. 38.
    Liochev, S., and Fridovich, I. Biochim. Biophys. Acta in press, 1987.Google Scholar
  39. 39.
    Bielski, B. H. J., and Chan, P. C. J. Amer. Chem. Soc. 100: 1920–1921, 1978.CrossRefGoogle Scholar
  40. 40.
    Archibald, F. S., and Fridovich, I. Arch. Biochem. Biophys. 214: 452–463, 1982.PubMedCrossRefGoogle Scholar
  41. 41.
    Kitzler, J., and Fridovich, I. J. Free Rad. Biol. Med. 2, 245–248, 1987.CrossRefGoogle Scholar
  42. 42.
    Brown, O. R., and Scither, R. L. Fund. Appl. Toxicol. 3: 209–214, 1983.CrossRefGoogle Scholar
  43. 43.
    Kuo, C. F., Mashino, T., and Fridovich, I. J. Biol. Chem., in press, 1987.Google Scholar
  44. 44.
    Moody, C. S., and Hassan, H. M. Proc. Nat. Acad. Sci., USA 79: 2855–2859, 1982.CrossRefGoogle Scholar
  45. 45.
    Farr, S. B., D’Ari, R., and Touati, D. Proc. Nat. Acad. Sci. USA 83: 8268–8272, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Rosen, G. M. Barker, M. J., and Rauckman, E. J. J. Biol. Chem. 258: 4725–2228, 1983.Google Scholar
  47. 47.
    Freeman, B. A., Rosen, G. M., and Barber, M. J. J. Biol. Chem. 261: 6590–6593, 1986.PubMedGoogle Scholar
  48. 48.
    Rabinowitch, H. D., Privalle, C. T., and Fridovich, I. J. Free Rad. Biol. Med., in press, 1987.Google Scholar
  49. 49.
    Fridovich, I. Arch. Biochem. Biophys. 247: 1–11, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Fridovich, I. Adv. Enzymol. 58: 61–97, 1986.PubMedGoogle Scholar
  51. 51.
    Taylor, A. E., Matalon, S., and Ward, P., eds. Physiology of Oxygen Radicals, Williams and Wilkins, Baltimore, 1986.Google Scholar
  52. 52.
    Weiss, S. J. Acta Physiol. Scand. Suppl. 548, 9–37, 1986.PubMedGoogle Scholar
  53. 53.
    Sies, H., ed., Oxidative Stress, Academic Press, New York, 1985.Google Scholar
  54. 54.
    Granger, D. N., Hollworth, M. E., and Parks, D. A. Acta Physiol. Scand. Suppl. 548: 47–63, 1986.PubMedGoogle Scholar
  55. 55.
    McCord, J. M. Adv. Free Rad. Biol. Med. 2: 325–345, 1986.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Irwin Fridovich
    • 1
  1. 1.Department of BiochemistryDuke University Medical CenterDurhamUSA

Personalised recommendations