Advertisement

Role of Nerve Growth Factor in the Central Nervous System

  • Franz Hefti
  • Jukka A. Hartikka
  • Claudia N. Montero
  • Emmanuel O. Junard
Part of the Topics in the Neurosciences book series (TINS, volume 8)

Abstract

In recent years, the concept has evolved that survival of neurons during development is influenced by “neurotrophic factors.” Paradigmatic studies were those on nerve growth factor (NGF), which affects survival and function of peripheral sympathetic and sensory neurons [1–4]. Other neurotrophic factors have been characterized that affect the survival and function of parasympathetic neurons [5], of cholinergic motorneurons [6], of retinal cells, and of a subpopulation of sensory neurons [7, 8]. These findings have been taken to suggest that populations of neurons require the presence of specific neurotrophic factors for survival during development, during differentiation, and for maintenance of function [9, 10].

Keywords

Nerve Growth Factor Cholinergic Neuron Basal Forebrain Nucleus Basalis Choline Acetyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greene, L.A. and Shooter, E.M. (1980). The nerve growth factor: Biochemistry, synthesis, and mechanism of action. Ann. Rev. Neurosci. 3, 353–402.PubMedCrossRefGoogle Scholar
  2. 2.
    Levi-Montalcini, R. (1982). Developmental neurobiology and the natural history of nerve growth factor. Ann. Rev. Neurosci. 5, 341–362.PubMedCrossRefGoogle Scholar
  3. 3.
    Thoenen, H. and Barde, Y.A. (1980). Physiology of nerve growth factor. Physiol. Rev. 60, 1284–1335.PubMedGoogle Scholar
  4. 4.
    Yankner, B.A. and Shooter, E.M. (1982). The biology and mechanism of action of nerve growth factor. Ann. Rev. Biochem. 51, 845–868.PubMedCrossRefGoogle Scholar
  5. 5.
    Barbin, G., Manthorpe, M. and Varon, S. (1984). Purification of the chick eye ciliary neu-ronotrophic factor. J. Neurochem. 43, 1468–1478.PubMedCrossRefGoogle Scholar
  6. 6.
    Hill, M.A. and Bennett, M.R. (1983). Cholinergic growth factor from skeletal muscle elevated following denervation. Neurosci Lett. 35. 31–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Barde, Y.A., Edgar, D. and Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–559.PubMedGoogle Scholar
  8. 8.
    Johnson, J.E., Barde, Y.A., Schwab, M. and Thoenen, H. (1986). Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J. Neurosci. 6, 3031–3038.PubMedGoogle Scholar
  9. 9.
    Thoenen, H. and Edgar, D. (1985). Neurotrophic factors. Science 229, 238–242.PubMedCrossRefGoogle Scholar
  10. 10.
    Varon, S. and Adler, R. (1980). Nerve growth factors and control of nerve growth. Curr. Top. Dev. Biol. 16, 207–252.PubMedCrossRefGoogle Scholar
  11. 11.
    Murphy, R.A., Landis, S.C., Bernanke, J. and Siminoski, K. (1986). Absence of the alpha and gamma subunits of 7S nerve growth factor in denervated rodent iris: Immunocytochemical studies. Develop. Biol. 114, 369–380.PubMedCrossRefGoogle Scholar
  12. 12.
    Edwards, R.H., Selby, M.J. and Rutter W.J. (1986). Differential RNA splicing predicts two distinct nerve growth factor precursors. Nature 319, 784–787, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Francke, U., DeMartinville, B., Coussens, L. and Ullrich, A. The human gene for the beta-subunit of nerve growth factor is located on the proximal short arm of chromosome 1. Science 222, 1248–1250, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Huebner, K., Isobe, M., Chao, M., Bothwell, M., Ross, A.H., Finan, J., Hoxie, J.A., Sehgal, A., Buck, C.R., Lanahan, A., Nowell, P.C., Koprowski, H. and Croce, C.M. (1986). The nerve growth factor receptor gene is at human chromosome region 17ql2–17q22, distal to the chromosome 17 breakpoint in acute leukemias. Proc. Natl. Acad. Sci. USA 83, 1403–1407.PubMedCrossRefGoogle Scholar
  15. 15.
    Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G.I. and Tutter, W.J. (1983). Isolation and nucleotide sequence of cDNA encoding the precursor of mouse nerve growth factor. Nature 302, 538–540.PubMedCrossRefGoogle Scholar
  16. 16.
    Ullrich, A., Gray, A., Berman, C. and Dull, T.J. (1983). Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature 303, 821–825.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson, E.M., Gorin, P.D., Brandeis, L.D. and Pearson, J. (1980). Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science 210, 916–918.PubMedCrossRefGoogle Scholar
  18. 18.
    Yip, H.K., Rich, K.M., Lampe, P.A. and Johnson, E.M. (1984). The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. J. Neurosci. 4, 2986–2992.PubMedGoogle Scholar
  19. 19.
    Toniolo, G., Dunnett, S.B., Hefti, F. and Will, B. (1985). Acetylcholine-rich transplants in the hippocampus: Influence of intrinsic growth factors and application of NGF on choline acetyltransferase activity. Brain Res. 345, 141–146.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufman, L.M., Barry, S.R. and Barrett, J.N. (1985). Characterization of tissue-derived macromolecules affecting transmitter synthesis in rat spinal cord neurons. J. Neurosci. 5, 160–166.PubMedGoogle Scholar
  21. 21.
    Dreyfus, C.F., Peterson, E.R. and Crain, S.M. (1980). Failure of nerve growth factor to affect fetal mouse brain catecholaminergic neurons in culture. Brain Res. 194, 540–551.PubMedCrossRefGoogle Scholar
  22. 22.
    Schwab, M., Otten, U., Agid, Y. and Thoenen, H. (1979). Nerve growth factor (NGF) in the rat CNS: Absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168, 473–483.PubMedCrossRefGoogle Scholar
  23. 23.
    Dribin, L.B. and Barrett, J.N. (1980). Conditioned medium enhances neuritic outgrowth from rat spinal cord explants. Dev. Biol. 74, 184–195.PubMedCrossRefGoogle Scholar
  24. 24.
    Crutcher, K.A. and Collins, F. (1982). In vitro evidence for two distinct hippocampal growth factors: Basis of neuronal plasticity? Science 217, 67–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Goedert, M., Fine, A., Hunt, S.P. and Ullrich, A. (1986). Nerve growth factor mRNA in peripheral and central rat tissues and the human central nervous system: Lesion effects in the rat brain and levels in Alzheimer’s disease. Molec. Brain Res. 1, 85–92.CrossRefGoogle Scholar
  26. 26.
    Konkol, R.J., Mailam, R.B., Bendeich, E.G., Garrison, A.M., Mueller, R.A. and Breese, G.R. (1978). Evaluation of the effects of nerve growth factor and anti-nerve growth factor on the development of central catecholaminergic neurons. Brain Res. 144, 277–285.PubMedCrossRefGoogle Scholar
  27. 27.
    Shelton, D.L. and Reichardt, L.F. (1986). Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc. Natl. Acad. Sci. USA 83, 2714–2718.PubMedCrossRefGoogle Scholar
  28. 28.
    Whittemore, S.R., Ebendal, T., Larkfors, L., Olson, L., Seiger, A., Stromberg, I. and Persson, H. (1986). Developmental and regional expression of beta nerve growth factor messenger RNA and protein in the rat central nervous system. Proc. Natl. Acad. Sci. USA 83, 817–821.PubMedCrossRefGoogle Scholar
  29. 29.
    Korsching, S., Auburger, G., Heumann, R., Scott, J. and Thoenen, H. (1985). Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J. 4, 1389–1393.PubMedGoogle Scholar
  30. 30.
    Large, T.H., Bodary, S.C., Clegg, D.O., Weskamp, G., Otten, U. and Reichardt, L.F. (1986). Nerve growth factor gene expression in the developing rat brain. Science 234, 352–355.PubMedCrossRefGoogle Scholar
  31. 31.
    Seiler, M. and Schwab, M.E. (1984). Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 300, 33–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Taniuchi, M., Schweizer, J.B. and Johnson, E.M. (1986). Demonstration of nerve growth factor receptor in the rat brain. Proc. Natl. Acad. USA 83, 4094–4098.CrossRefGoogle Scholar
  33. 33.
    Richardson, P.M., Verge Issa, V.M. and Riopelle, R.J. (1986). Distribution of neuronal receptors for nerve growth factor in the rat. J. Neurosci. 2312–2321.Google Scholar
  34. 34.
    Chandler, C.E., Parsons, L.M., Hosang, M. and Shooter, E.M. (1984). A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J. Biol. Chem. 259, 6882–6889.PubMedGoogle Scholar
  35. 35.
    Ross, A.H., Grob, P., Bothwell, M., Elder, D.E., Ernst, C.S., Marano, N., Ghrist, B.F., Slemp, C.C., Herlyn, M., Atkinson, B. and Koprowski, H. (1984). Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc. Natl. Acac. USA 81, 6681–6685.CrossRefGoogle Scholar
  36. 36.
    Gnahn, H., Hefti, F., Heumann, R., Schwab, M. and Thoenen, H. (1983). NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal forebrain; evidence for a physiological role of NGF in the brain? Dev. Brain Res. 9, 45–52.CrossRefGoogle Scholar
  37. 37.
    Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Buchanan, K. and Johnston, M.V. (1985). Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science 229, 284–286.PubMedCrossRefGoogle Scholar
  38. 38.
    Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Buchanan, K., Gemski, J. and Johnston, M.V. (1986). Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Molec. Brain Res. 1, 53–62.CrossRefGoogle Scholar
  39. 39.
    Hefti, F., Dravid, A. and Hartikka, J. (1984). Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septohippocampal lesions. Brain Res. 293, 305–309.PubMedCrossRefGoogle Scholar
  40. 40.
    Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R. and Schwab, M. (1985). Nerve growth factor (NGF) increases choline acetyltransferase but not survival or fiber growth of cultured septal cholinergic neurons. Neuroscience 14, 55–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Honegger, P. and Lenoir, D. (1982). Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res. 3, 229–238.CrossRefGoogle Scholar
  42. 42.
    Bjorklund, A. and Stenevi, U. (1977). Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia I. Axonal regeneration along the hippocampal fimbria. Brain Res. 138, 259–270.PubMedCrossRefGoogle Scholar
  43. 43.
    Bjorklund, A. and Stenevi, U. (1979). Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 59, 62–100.PubMedGoogle Scholar
  44. 44.
    Crutcher, K. A. and Davis, J.N. (1981). Sympathetic noradrenergic sprouting in response to central cholinergic denervations. Trends Neurosci. 4, 70–72.CrossRefGoogle Scholar
  45. 45.
    Mesulam, M.M., Mufson, E.J., Wainer, B.H. and Levey, A.I. (1983). Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185–1201.PubMedCrossRefGoogle Scholar
  46. 46.
    Wainer, B.H., Levey, A.I., Mufson, E.F. and Mesulam, M.M. (1984). Cholinergic systems in mammalian brain identified with antibodies against choline acetyltransferase. Neurosci. Int. 6, 163–182.Google Scholar
  47. 47.
    Hefti, F., Hartikka, J., Salvatierra, A., Weiner, W.J. and Mash, D.C. (1986). Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci. Lett. 69, 37–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Martinez, H.J., Dreyfus, C.F., Jonakait, G.M. and Black, I.B. (1985). Nerve growth factor promotes cholinergic development in brain striatal cultures. Proc. Natl. Acad. Sci. USA 82, 7777–7781.PubMedCrossRefGoogle Scholar
  49. 49.
    Eckenstein, F. and Sofroniew, M.W. (1983). Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J. Neurosci. 3, 2286–2291.PubMedGoogle Scholar
  50. 50.
    Levey, A.I., Wainer, B.H., Mufson, E.J. and Mesulam, M.M. (1983). Co-localization of acetylcholinesterase and choline acetyltransferase in the rat cerebrum. Neuroscience 9, 9–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Hefti, F. (1986). Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6, 2155–2162.PubMedGoogle Scholar
  52. 52.
    Price, D.L., Struble, R.G., Whitehouse, P.J., Kitt, C.A. and Cork, L.C. (1985). Neuropathological processes in Alzheimer’s disease. Drug Develop. Res. 5, 59–67.CrossRefGoogle Scholar
  53. 53.
    Wisniewski, H.M. and Merz, G.S. (1983). Neuritic and amyloid plaques in senile dementia of the Alzheimer type. In Banbury Report 15: Biological Aspects of Alzheimer’s Disease, Katzman, R., ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 145–153.Google Scholar
  54. 54.
    Coyle, J.T., Price, D.L. and DeLong, M.R. (1983). Alzheimer’s disease: A disease of cortical cholinegic innervation. Science 219, 1184–1190.PubMedCrossRefGoogle Scholar
  55. 55.
    Davies, P. (1985). Is it possible to design rational treatment for the symptoms of Alzheimer’s disease? Drug Develop. Res. 5, 69–75.CrossRefGoogle Scholar
  56. 56.
    Wilcock, G.K., Esiri, M.M., Bowen, D.M. and Smith, C.C. (1983). The nucleus basalis in Alzheimer’s disease: Cell counts and cortical biochemistry. Neuropathol. Appl. Neurobiol. 9, 175–179.PubMedCrossRefGoogle Scholar
  57. 57.
    Arendt, T., Bigl, V., Tennstedt, A. and Arendt, A. (1984). Correlation between cortical plaque count and neuronal loss in the nucleus basalis in Alzheimer’s disease. Neurosci. Lett. 48, 81–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Francis, P.T., Palmer, A.M., Sims, N.R., Bowen, D.M., Davison, A.N., Esiri, M.M., Neary, D., Snowden, J.S. and Wilcock, G.K. (1985). Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment. Lancet, July 4, 7–11.Google Scholar
  59. 59.
    Perry, E.K., Tomlison, B.E., Blessed, G., Perry, R.H., Cross, A.J. and Crow, T.J. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Brit. Med. J. 2, 1457–1459.PubMedCrossRefGoogle Scholar
  60. 60.
    Bartus, R.T., Dean, R.L., Beer, B. and Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408–417.PubMedCrossRefGoogle Scholar
  61. 61.
    Flicker, C., Dean, R.L., Watkins, D.L., Fisher, S.K. and Bartus, R.T. (1983). Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol. Biochem. Behav. 18, 973–981.PubMedCrossRefGoogle Scholar
  62. 62.
    Hepler, D.J., Olton, D.S., Wenk, G.L. and Coyle, J.T. (1985). Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J. Neurosci. 5, 866–873.PubMedGoogle Scholar
  63. 63.
    Russell, R.W. (1982). Cholinergic system in behavior: The search for mechanisms of action. Ann. Rev. Pharmacol. Toxicol. 22, 435–463.CrossRefGoogle Scholar
  64. 64.
    Hefti, F. and Weiner, W. J. (1986). Nerve growth factor and Alzheimer’s disease. Ann. Neurol. 20, 275–281.PubMedCrossRefGoogle Scholar
  65. 65.
    Mesulam, M.M. (1986). Alzheimer plaques and cortical cholinergic innervation. Neuroscience 17, 275–267.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Franz Hefti
  • Jukka A. Hartikka
  • Claudia N. Montero
  • Emmanuel O. Junard

There are no affiliations available

Personalised recommendations