Skip to main content

Pharmacology of Excitatory Amino Acid Antagonists and their Possible Therapeutic Use in Neurological Disease

  • Chapter

Part of the book series: Topics in the Neurosciences ((TINS,volume 8))

Abstract

Excitatory amino acid antagonists arc of two main types: 1) structural analogues of dicarboxylic amino acids that compete with glutamate or other agonists at the receptor site and 2) lipophilic compounds, without acidic groups, that block the excitatory action of agonists by a noncompetitive mechanism. The postsynaptic receptors at which amino acids exert an excitatory action can be classified according to their preferred agonists as kainate-, quisqualate-, and N-methyl-D-aspartate-preferring receptors [1, 2]. Referring to these receptor subtypes as kainate, quisqualate, and NMDA receptors is a convenient shorthand; it implies nothing about the nature of the endogenous neurotransmitters. Glutamate is a highly effective agonist at all three receptor subtypes. Aspartate acts preferentially on the NMDA receptor in spinal cord neurons [3]. The sulphur-containing analogues of glutamate and aspartate interact with quisqualate and NMDA receptors but not with kainate receptors [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies, J., Evans, R.H., Smith, D.A. and Watkins, J.C. (1982). Differential activation and blockade of excitatory amino acid receptors in the mammalian and amphibian spinal cord. Comp. Biochem. Physiol. 72C, 211–224.

    CAS  Google Scholar 

  2. Foster, A.C. and Fagg, G.E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res. Rev. 7, 103–164.

    Article  CAS  Google Scholar 

  3. Mayer, M.L. and Westbrook, G.L. (1986). The physiology of excitatory amino acids in the vertebrate central nervous system. Progress in Neurobiology, 28, 197–276.

    Article  Google Scholar 

  4. Murphy, D.E. and Williams, M. (1986). Interaction of sulfur-containing amino acids with quisqualate and kainate excitatory amino acid receptors in rat brain. In Excitatory Amino Acid Transmission, Hicks, T.P., Lodge, D. and McLennan, H., eds., Alan R. Liss, New York, pp. 63–66.

    Google Scholar 

  5. Peet, M.J., Curry, K., Magnuson, D.S. and McLennan, H. (1986). Conformational requirements for activation of burst firing of rat CA-1 hippocampal pyramidal neurones. In Excitatory Amino Acid Transmission. Hicks, T.P., Lodge, D. and McLennan, H., eds., Alan R. Liss, New York, pp. 35–42.

    Google Scholar 

  6. Berry, S.C., Dawkins, S.L. and Lodge, D. (1984). Comparison of o- and K-opiate receptor ligands as excitatory amino acid antagonists. Brit. J. Pharmacol. 83, 179–185.

    CAS  Google Scholar 

  7. Lodge, D., Berry, S.C., Church, J., Martin, D., McGhee, A., Lai, H.M. and Thomson, A.M. (1984). Isomers of cyclazocine act as excitatory amino acid antagonists. Neuropeptides 5, 245–248.

    Article  PubMed  CAS  Google Scholar 

  8. Wong, E.H., Kemp, J.A., Priestley, T., Knight, A.R., Woodruff, G.N. and Iversen, L.L. (1986). The novel anticonvulsant MK 801 is a potent N-methyl-D-aspartate antagonist. Proc. Nat. Acad. Sei. USA 83, 7104–7108.

    Article  CAS  Google Scholar 

  9. Croucher, M.J., Collins, J. F. and Meldrum, B.S. (1982). Anticonvulsant action of excitatory amino acid antagonists. Science 216, 899–901.

    Article  PubMed  CAS  Google Scholar 

  10. Czuczwar, S.J. and Meldrum, B.S. (1982). Protection against chemically-induced seizures by 2-amino-7-phosphonoheptanoic acid. Eur. J. Pharmacol. 83, 335–338.

    Article  PubMed  CAS  Google Scholar 

  11. Czuczwar, S.J., Cavalheiro, E.A., Turski, L., Turski, W.A. and Kleinrok, Z. (1985). Phos-phonic analogues of excitatory amino acids raise the threshold for maximal electroconvulsions in mice. Neurosci. Res. 3, 86–90.

    Article  PubMed  CAS  Google Scholar 

  12. Meldrum, B.S., Croucher, M.J., Badman, G. and Collins, J.F. (1983). Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci. Lett. 39, 101–104.

    Article  PubMed  CAS  Google Scholar 

  13. Meldrum, B.S., Croucher, M.J., Czuczwar, S.J., Collins, J.F. Curry, K., Joseph, M. and Stone, T.W. (1983). A comparison of the anticonvulsant potency of +-2-amino-5-phos-phonopentanoic acid and (+-)2-amino-7-phosphonoheptanoic acid. Neuroscience 9, 925–930.

    Article  PubMed  CAS  Google Scholar 

  14. Meldrum, B.S., Wardley-Smith, B., Halsey, M. and Rostain, J.C. (1983). 2-amino-7- phosphonoheptanoic acid protects against the high pressure neurological syndrome. Eur. J. Pharmacol. 87, 501–502.

    Article  PubMed  CAS  Google Scholar 

  15. Peterson, D.W., Collins, J.F. and Bradford, H.F. (1984). Anticonvulsant action of amino acid antagonists against kindled hippocampal seizures. Brain Res. 311, 176–180.

    Article  PubMed  CAS  Google Scholar 

  16. Morris, R.G., Anderson, E., Lynch, G.S. and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776.

    Article  PubMed  CAS  Google Scholar 

  17. Millan, M.H., Faingold, C.L. and Meldrum, B.S. (1987). Intranigral 2-amino-7-phosphono-heptanoic acid protects against audiogenic seizures in genetically-epilepsy prone rats. In Advances in Epileptology 15, Wolf, P., ed., Raven Press, New York.

    Google Scholar 

  18. Patel, S., Millan, M.H., Mello, L.M. and Meldrum, B.S. (1986).2-amino-7-phosphono-heptanoic acid (2-APH) infusion into entopeduncular nucleus protects against limbic seizures in rats. Neurosci. Lett. 64, 226–230.

    Article  PubMed  CAS  Google Scholar 

  19. Turski, L., Cavalheiro, E.A., Turski, W.A. and Meldrum, B.S. (1986). Excitatory transmission within substantia nigra pars reticulata regulates threshold for seizures produced by pilocarpine in rats: Effects of intranigral 2-amino-7-phosphonoheptanoate and N-methyl-D-aspartate. Neuroscience 18, 61–67.

    Article  PubMed  CAS  Google Scholar 

  20. Turski, L., Schwarz, M., Turski, W.A., Klockgether, T., Sontag, K-H. and Collins, J.F. (1985). Muscle relaxant action of excitatory amino acid antagonists. Neurosci. Lett. 53, 321–326.

    Article  PubMed  CAS  Google Scholar 

  21. Bennett, D.A. and Amrick, C.L. (1986). Antagonists of N-methyl-D-aspartate (NMDA) produce anticonflict activity. In Excitatory Amino Acid Transmission. Hicks, T.P., Lodge, D. and McLennan, H., eds., Alan R. Liss, New York, pp. 213–216.

    Google Scholar 

  22. Clineschmidt, B.V., Williams, M., Witoslawski, J.J., Bunting, P.R., Risley, E.A. and Totaro, J. A. (1982). Restoration of shock-suppressed behavior by treatment with (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK 801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Develop. Res. 2, 147–163.

    Article  CAS  Google Scholar 

  23. Stephens, D.N., Meldrum, B.S., Weidmann, R., Schneider, C. and Grutzner, M. (1986). Does the excitatory amino acid receptor antagonist 2-APH exhibit anxiolytic activity? Psychopharmacology 90, 166–169.

    Article  PubMed  CAS  Google Scholar 

  24. Collingridge, G.L., Kehl, S.J. and McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46.

    PubMed  CAS  Google Scholar 

  25. Harris, E.W. and Cotman, C.W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Brain Res.

    Google Scholar 

  26. Stringer, J.L. and Guynet, P.E. (1983). Elimination of long-term potentiation in the hippocampus by phencyclidine and ketamine. Brain Res. 258, 159–164.

    Article  CAS  Google Scholar 

  27. Halliwell, R.F. and Morris, R.G. (1987). Anticonvulsant doses of MK 801 fail to block long-term potentiation in vivo or impair spatial memory in the rat. Abstracts, Brain Res. Assoc. March, 1987.

    Google Scholar 

  28. Garthwaite, G. and Garthwaite J. (1984). Differential sensitivity of rat cerebellar cells in vitro to the neurotoxic effects of excitatory amino acid analogues. Neurosci. Lett. 48, 361–367.

    Article  PubMed  CAS  Google Scholar 

  29. Garthwaite, G. and Garthwaite, J. (1986). Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: Dependence on calcium concentration. Neurosci. Lett. 66, 193–198.

    Article  PubMed  CAS  Google Scholar 

  30. Schwarcz, R., Collins, J.F. and Parks, D.A. (1982). α-amino-ω-phosphonocarboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus. Neurosci. Lett. 33, 85–90.

    Article  PubMed  CAS  Google Scholar 

  31. Meldrum, B.S. (1983). Metabolic factors during prolonged seizures and their relation to nerve cell death. In Advances in Neurology 34, Status Epilepticus. Delgado-Escueta, A. V., Wasterlain, C.G., Treiman, D.M. and Porter, R.J., eds., Raven Press, New York, pp. 261–275.

    Google Scholar 

  32. Olney, J.W. (1985). Excitatory transmitters and epilepsy-related brain damage. Int. Rev. Neurobiol. 27, 338–362.

    Google Scholar 

  33. Evans, M.C., Griffiths, T. and Meldrum, B.S. (1984). Kainic acid seizures and the reversibility of calcium loading in vulnerable neurons in the hippocampus. Neuropathol. Appl. Neurobiol. 10, 285–302.

    Article  PubMed  CAS  Google Scholar 

  34. Griffiths, T., Evans, M.C. and Meldrum, B.S. (1983). Intracellular calcium accumulation in rat hippocampus during seizures induced by bicuculline or L-allylglycine. Neuroscience 10, 385–395.

    Article  PubMed  CAS  Google Scholar 

  35. Griffiths, T., Evans, M.C. and Meldrum, B.S. (1984). Status epilepticus: The reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus. Neuroscience 12, 557–567.

    Article  PubMed  CAS  Google Scholar 

  36. Sloviter, R.S. and Dempster, D.W. (1985). “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res. Bull. 15, 39–60.

    Article  PubMed  CAS  Google Scholar 

  37. Simon, R.P., Griffiths, T., Evans, M.C., Swan, J.H. and Meldrum, B.S. (1984). Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischaemia: An electron microscopy study in the rat. J. Cereb. Blood Flow Metab. 4, 350–361.

    Article  PubMed  CAS  Google Scholar 

  38. Johansen, F.F., Jorgensen, M.B. and Diemer, N.H. (1986). Ischemia induced delayed neuronal death in the CA1 hippocampus is dependent on intact glutamatergic innervation. In Excitatory Amino Acid Transmission, Hicks, T.P., Lodge, D. and McLennan, H., eds. Alan R. Liss, pp. 245–248.

    Google Scholar 

  39. Simon, R.P., Swan, J.H., Griffiths, T. and Meldrum, B.S. (1984). Blockade of N-methyl-D-aspartate receptors may protect against ischaemic damage in the brain. Science 226, 850–852.

    Article  PubMed  CAS  Google Scholar 

  40. Evans, M.C, Swan, J.H. and Meldrum, B.S. (1987). Blockade of excitatory neurotransmission provides partial long-term protection against ischaemic brain damage. In Fifteenth Princeton Conference on Cerebrovascular Disease. Raichle, M.E. and Parks, W.S., eds., Raven Press, New York, 27–36.

    Google Scholar 

  41. Boast, C.A., Gerhardt, S.C. and Janak, P. (1986). Systemic AP7 reduces ischaemic brain damage in gerbils. In Excitatory Amino Acid Transmission, edited by Hicks, T.P., Lodge, D. and McLennan, H., eds., Alan R. Liss, New York, pp. 249–252.

    Google Scholar 

  42. Simon, R.P., Meldrum, B.S., Schmidley, J.W., Swan, J.H. and Chapman, A.G. (1987). Mechanisms of selective vulnerability: Hypoglycaemia. In Fifteenth Princeton Conference on Cerebrovascular Diseases, Raichle, M.E. and Parks, W.S. eds., Raven Press, New York, 27–36.

    Google Scholar 

  43. Westerberg, E. and Wieloch, T. (1986). Excitatory amino acids and hypoglycaemic brain damage. In Excitatory Amino Acid Transmission, Hicks, T.P., Lodge, D. and McLennan, H., eds., Alan. R. Liss, New York, pp. 225–232.

    Google Scholar 

  44. Spencer, P.S., Roy, D.N., Ludolph, A., Hugun, J., Dwived, M.P. and Schaumburg, H.H. (1986). Lathyrism: Evidence for role of the neuroexcitatory amino acid BOAA. Lancet II, 1066–1067.

    Article  Google Scholar 

  45. Watkins, J.C., Curtis, D.R. and Biscoe, T.J. (1966). Central effects of B-N-oxalyl-a,e-diaminopropionic acid and other lathyrus factors. Nature 211, 637.

    Article  PubMed  CAS  Google Scholar 

  46. Mouritzen Dam, A. (1979). The density of neurons in the human hippocampus. Neuropathol. Appl. Neurobiol. 5, 249–264.

    Article  PubMed  CAS  Google Scholar 

  47. Ellison, D.W., Beal, M.F., Mazurek, M.F., Bird, E.D. and Martin, J.B. (1986). A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol. 20, 616–621.

    Article  PubMed  CAS  Google Scholar 

  48. Quirion, R., DiMaggio, D.A., French, E.D., Contreras P.C., Shiloach, J., Pert, C.B., Everist H., Pert, A. and O’Donohue, T.L. (1984). Evidence for an endogenous peptide ligand for the phencyclidine receptor. Peptides 5, 967–973.

    Article  PubMed  CAS  Google Scholar 

  49. Nishikawa, T., Takashima., M. and Toru, M. (1963). Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci. Lett. 40, 245–250.

    Article  Google Scholar 

  50. Greenamyre, J.T., Penney, J.B., D’Amato, C.J. and Young, A.B. (1987). Dementia of the Alzheimer’s type: Changes in hippocampal L-[3H]glutamate binding. J. Neurochem. 48, 543–551.

    Article  PubMed  CAS  Google Scholar 

  51. Geddes, J.W., Chang-Chui, H., Cooper, S.M. Lott, I.T. and Cotman, C.W. (1986). Density and distribution of NMDA receptors in the human hippocampus in Alzheimer’s disease. Brain Res. 399, 156–161.

    Article  PubMed  CAS  Google Scholar 

  52. Geddes, J.W., Monaghan, D.T., Cotman, C.W., Lott, LT., Kim, R.C. and Chui, H.C. (1985). Plasticity of hippocampal circuitry in Alzheimer’s disease. Science 230, 1179–1181.

    Article  PubMed  CAS  Google Scholar 

  53. Hyman, B.T., VanHoesen, G.W., Damasio, A.R. and Barnes, C.L. (1984). Alzheimer’s disease: Cell specific pathology isolates the hippocampal formation. Science 225, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  54. Hyman, B.T., VanHoesen, G.W., Kromer, L.J., and Damasio, A.R. (1986). Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann. Neurol. 20, 472–481.

    Article  PubMed  CAS  Google Scholar 

  55. Greenamyre, J.T., Penney, J.B. and Young, A.B. (1987). Evidence for transient, perinatal glutamatergic innervation of globus pallidus. J. Neurosci. 7, 1022–1030.

    PubMed  CAS  Google Scholar 

  56. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J. and Martin, J.B. (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  57. Koh, J-Y., Peters, S., Choi, D.W. (1986). Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science, 234, 73–76.

    Article  PubMed  CAS  Google Scholar 

  58. Plaitakis A.A., Berl, S. and Yahr, M.D. (1982). Abnormal glutamate metabolism in an adult-onset degenerative neurological disorder. Science 216, 193–196.

    Article  PubMed  CAS  Google Scholar 

  59. Sorbi, S., Tonini, S., Giannini, E., Piacentini, S., Marini, P. and Amadulu, L. (1986). Abnormal platelet glutamate dehydrogenase activity and activation in dominant and non-dominant olivopontocerebellar atrophy. Ann. Neurol. 19, 239–245.

    Article  PubMed  CAS  Google Scholar 

  60. Kornhuber, H.H. (1983). Chemistry, physiology and neuropsychology of schizophrenia: Towards an earlier diagnosis of schizophrenia. I. Arch. Psychiatr. Nervenkr. 233, 415–422.

    Article  CAS  Google Scholar 

  61. Kim, J.S., Kornhuber, H.H., Scmid-Burgk, W. and Holzmuller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20, 379–382.

    Article  PubMed  CAS  Google Scholar 

  62. Gattaz, W.F., Gattaz, D. and Beckmann, H. (1982). Glutamate in schizophrenics and healthy controls. Arch. Psychiatr. Nervenkr. 231. 221–225.

    Article  PubMed  CAS  Google Scholar 

  63. Perry, T.L. (1982). Normal cerebrospinal fluid and brain glutamate levels in schizophrenia do not support the hypothesis of glutamatergic neuronal dysfunction. Neurosci. Lett. 28, 81–85.

    Article  PubMed  CAS  Google Scholar 

  64. Sherman, A.D. and Mott, J. (1984). Direct effect of neuroleptics on glutamate release. Neuropharmacology 23, 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  65. Sherman, A.D. and Mott, J. (1986). Effects of glutamine inhibition on release of endogenous glutamic acid. Neuropharmacology 25, 1353.

    Article  PubMed  CAS  Google Scholar 

  66. Rudolph, M.I. and Bustos, G. (1986). Search of a L-glutamate receptor related to modulation of neurotransmission in the rat corpus striatum. Neurochem. Int. 8, 481–492.

    Article  PubMed  CAS  Google Scholar 

  67. Cheramy, A., Romo, R., Godehu, G., Baruch, P. and Glowinski, J. (1986). In vivo presynaptic control of dopamine release in the cat caudate nucleus. II. Facilitatory or inhibitory influence of L-glutamate. Neuroscience 19, 1081–1090.

    Article  PubMed  CAS  Google Scholar 

  68. Contreras, P.C., DiMaggio, D.A. and O’Donohue, T.L. (1987). An endogenous ligand for the sigma opiod binding site. Synapse 1, 57–61.

    Article  PubMed  CAS  Google Scholar 

  69. Troupin, A.S., Mending, J.R., Cheng, F. and Risinger, M.W. (1986). MK 801. In New Anticonvulsant Drugs, Meldrum, B.S. and Porter, R.J., eds., John Libbey, London, pp. 191–202.

    Google Scholar 

  70. Croucher, M.J., Meldrum, B.S., Jones, A.W. and Watkins, J.C. (1984). γ-D-glutamyl-aminomethylsulphonic acid (GAMS), a kainate and quisqualate antagonist, prevents sound-induced seizures in DBA/2 mice. Brain Res. 322, 111–114.

    Article  PubMed  CAS  Google Scholar 

  71. Croucher, M.J., Meldrum, B.S. and Collins, J.F. (1984). Anticonvulsant and proconvulsant properties of a series of structural isomers of piperidine dicarboxylic acid. Neuropharmacology 23, 467–472.

    Article  PubMed  CAS  Google Scholar 

  72. Meldrum, B.S., Chapman, A.G. and Mello, L. (1987). Anticonvulsant action of kynurenic acid in reflex epilepsy in DBA/2 mice and in photosensitive baboons. Bender, D. and Joseph, M.H., eds., Progress in Tryptophan and Serotonin Research 1986. Walter de Gruyter & Co. Berlin, pp. 119–126.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Meldrum, B.S. (1988). Pharmacology of Excitatory Amino Acid Antagonists and their Possible Therapeutic Use in Neurological Disease. In: Ferrendelli, J.A., Collins, R.C., Johnson, E.M. (eds) Neurobiology of Amino Acids, Peptides and Trophic Factors. Topics in the Neurosciences, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1721-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1721-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8969-2

  • Online ISBN: 978-1-4613-1721-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics