Skip to main content

Conductance Mechanisms Activated by L-Glutamate

  • Chapter
  • 45 Accesses

Part of the book series: Topics in the Neurosciences ((TINS,volume 8))

Abstract

There is little doubt that L-glutamate, and perhaps other similar endogenous compounds, are major excitatory neurotransmitters in the mammalian CNS. Thus the role of excitatory amino acids both in the mediation of fast excitatory postsynaptic potentials (epsps) in numerous pathways, as well as their role in pathophysiological situations, is receiving increasing attention. The surge in scientific interest in this area can be traced to two important developments. First, the receptor classification scheme based on studies by Watkins and colleagues in the spinal cord which defined three receptor subtypes, activated selectively by N-methyl-D-aspartic (NMDA), kainic (KA), and quisqualic (QA) acids [1]. This classification has been particularly useful for studies of the NMDA receptor subtype for which a potent and selective antagonist, 2-amino-5-phosphonovaleric acid (AP5), has been available for several years [2]. An important corollary of this classification has been the recognition that L-glutamate acts at more than one receptor type, but with a particularly high affinity for the NMDA receptor [3]. The use of selective agonists and antagonists has also allowed rapid progress in the understanding of the regional and cellular localization of excitatory amino acid receptors oh CNS neurons, as discussed by Drs. Cotman and Fagg in this volume. The second important development has been the use of in vitro preparations, especially dissociated cell cultures for studies of the ion channels linked to these receptor subtypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watkins, J.C. and Evans, R.H. (1981). Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21, 165–204.

    Article  CAS  Google Scholar 

  2. Davies, J.D. and Watkins, J.C. (1982). Actions of D and L forms of 2-amino-5-phosphono-valerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 235, 378–386.

    Article  PubMed  CAS  Google Scholar 

  3. Olverman, H.J., Jones, A.W. and Watkins, J.C. (1984). L-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Nature 307, 460–462.

    Article  PubMed  CAS  Google Scholar 

  4. Garthwaite, J. (1985). Cellular uptake disguises action of L-glutamate on N-methyl-D-aspartate receptors. Br. J. Pharmacol. 85, 297–307.

    PubMed  CAS  Google Scholar 

  5. Mayer, M.L. and Westbrook, G.L. (1984). Mixed-agonist action of excitatory amino acids on mouse spinal cord neurons under voltage clamp. J. Physiol. (Lond.) 354, 29–53.

    CAS  Google Scholar 

  6. Hamill, O.P., Marty, A., Neher, A., Sakmann, B. and Sigworth, F.J. (1981). Improved patch-clamp technique for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  7. MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J. and Barker, J.L. (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321, 519–522.

    Article  PubMed  CAS  Google Scholar 

  8. Engberg, I., Flatman, J. A. and Lambert, J.D.C. (1979). The actions of excitatory amino acids on motoneurones in the feline spinal cord. J. Physiol. (Lond.) 288, 227–261.

    CAS  Google Scholar 

  9. Lambert, J.D., Flatman, J. A. and Engberg, I. (1981). Actions of excitatory amino acids on membrane conductance and potential in motoneurones. In Glutamate as a Neurotransmitter, DiChiari, G. and Gessa, G.L., eds., Raven Press, New York, pp. 205–216.

    Google Scholar 

  10. Westbrook, G.L. and Mayer, M.L. (1984). Glutamate currents in mammalian spinal neurons: Resolution of a paradox. Brain Res. 301, 375–379.

    Article  PubMed  CAS  Google Scholar 

  11. MacDonald, J.F. and Porietis, A.V. (1982). DL-Quisqualic and L-aspartic acids activate separate excitatory conductances in cultured spinal cord neurons. Brain Res. 245, 175–178.

    Article  PubMed  CAS  Google Scholar 

  12. MacDonald, J.F., Porietis, A.V. and Wojtowicz, J.M. (1982). L-aspartic acid induces a region of negative slope conductance in the current voltage relationship of cultured spinal cord neurons. Brain Res. 237, 248–253.

    Article  PubMed  CAS  Google Scholar 

  13. Mayer, M.L., Westbrook, G.L. and Guthrie, P.B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263.

    Article  PubMed  CAS  Google Scholar 

  14. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  15. Adams, P.R. (1976). Drug blockade of open end-plate channels. J. Physiol. (Lond.) 260, 531–552.

    CAS  Google Scholar 

  16. Adams, P.R. (1976). Voltage jump analysis of procaine action at frog end-plate. J. Physiol. (Lond.) 268, 291–318.

    Google Scholar 

  17. Neher, E. and Steinbach, J.H. (1978). Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. (Lond.) 277, 153–176.

    CAS  Google Scholar 

  18. Lingle, C. (1983). Blockade of cholinergic channels by chlorisondamine on a crustacean muscle. J. Physiol. (Lond.) 339, 395–417.

    CAS  Google Scholar 

  19. Clapham, D.E. and Neher, E. (1984). Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells. J. Physiol. (Lond.) 347, 255–277.

    CAS  Google Scholar 

  20. Mayer, M.L. and Westbrook, G.L. (1985). The action of N-methyl-D-aspartic acid on mouse spinal neurons in culture. J. Physiol. (Lond.) 361, 65–90.

    CAS  Google Scholar 

  21. Nowycky, M.C., Fox, A.P. and Tsien, R.W. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443.

    Article  PubMed  CAS  Google Scholar 

  22. Nowak, L. and Ascher, P. (1985). Divalent cation effects on NMDA-activated channels can be described as Mg-like or Ca-like. Soc. Neurosci. Abs. 11, 953.

    Google Scholar 

  23. Diebler, H., Eigen, M., Ilgenfritz, G., Maas, G. and Winkler, R. (1969). Kinetics and mechanism of reactions of main group metal ions with biological carriers. Pure Appl. Chem. 20, 93–115.

    Article  CAS  Google Scholar 

  24. Mayer, M.L. and Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol, 28, 197–276.

    Article  PubMed  CAS  Google Scholar 

  25. Westbrook, G.L. and Mayer, M.L. (1987). Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643.

    Article  PubMed  CAS  Google Scholar 

  26. Assaf, S.Y. and Chung, S.H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature 308, 734–736.

    Article  PubMed  CAS  Google Scholar 

  27. Howell, G.A., Welch, M.G. and Frederickson, C.J. (1984). Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308, 736–738.

    Article  PubMed  CAS  Google Scholar 

  28. Dingledine, R. (1983). N-methylaspartate activates voltage-dependent calcium conductances in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 343, 385–405.

    CAS  Google Scholar 

  29. Bürhle, C.P. and Sonnhof, U, (1983). The ionic mechanism of the excitatory action of L-glutamate upon the membranes of motoneurones of the frog. Pflügers Archiv. 396, 154–162.

    Article  Google Scholar 

  30. Pumain, R. and Heinemann, U. (1985). Stimulus- and amino acid-induced calcium and potassium changes in the rat neocortex. J. Neurophysiol. 53, 1–16.

    PubMed  CAS  Google Scholar 

  31. Mayer, M.L. and Westbrook, G.L. (1985). Divalent cation permeability of N-methyl-D-aspartate channels. Soc. Neurosci. Abstr. 11, 785.

    Google Scholar 

  32. Mayer, M.L. and Westbrook, G.L. (1987). Permeation and block by divalent cations of N-methyl-D-aspartate receptor channels in mouse spinal neurons. J. Physiol. (Lond.) 394, 501–527.

    CAS  Google Scholar 

  33. Ascher, P. and Nowak, L. (1986). Calcium permeability of the channels activated by N-methyl-D-aspartate (NMDA) in isolated mouse central neurones. J. Physiol. (Lond.) 377, 35.

    Google Scholar 

  34. Adams, D.J., Dwyer, T.M. and Hille, B. (1980). The permeability of endplate channels to monovalent and divalent cations. J. Gen. Physiol. 75, 493–510.

    Article  PubMed  CAS  Google Scholar 

  35. Lee, K.S. and Tsien, R.W. (1984). High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J. Physiol. (Lond.) 354, 253–272.

    CAS  Google Scholar 

  36. Mayer, M.L., MacDermott, A.B., Westbrook, G.L., Smith, S.J. and Barker, J.L. (1987). Agonist- and voltage-gated calcium entry in mouse spinal cord neurons under voltage clamp measured using arsenazo III. J. Neurosci., 7, 3230–3244.

    PubMed  CAS  Google Scholar 

  37. Sladeczek, F., Pin, J.P., Récasens, M., Bockaert, J. and Weiss, S. (1985). Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717–719.

    Article  PubMed  CAS  Google Scholar 

  38. Nicoletti, F., Meek, J.L., Iadarola, M.J., Chuang, D.M., Roth, B.L. and Costa, E. (1986). Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40–46.

    Article  PubMed  CAS  Google Scholar 

  39. Wigström, H., Gustaffson, B., Huang, Y. Y. and Abraham, W.C. (1986). Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta. Physiol. Scand. 126, 317–319.

    Article  PubMed  Google Scholar 

  40. Malinow, R. and Miller, J.P. (1986). Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320, 529–530.

    Article  PubMed  CAS  Google Scholar 

  41. Kelso, S.R., Ganong, A.H. and Brown, T.H. (1986). Hebbian synapses in hippocampus. Proc. Natl. Acad. Sci. USA 83, 5326–5330.

    Article  PubMed  CAS  Google Scholar 

  42. Davies, J.D. and Watkins, J.C. (1983). Role of excitatory amino acid receptors in mono- and polysynaptic excitation in the cat spinal cord. Exp. Brain Res. 49, 280–290.

    Article  PubMed  CAS  Google Scholar 

  43. Finkel, A.S. and Redman, S.J. (1983). The synaptic current evoked in cat spinal moto-neurones by impulses in single group la axons. J. Physiol. (Lond.) 342, 615–632.

    CAS  Google Scholar 

  44. Nelson, P.O., Pun, R.Y.K., and Westbrook, G.L. (1986). Synaptic excitation in cultures of mouse spinal cord neurones: Receptor pharmacology and behaviour of synaptic currents. J. Physiol. (Lond.) 372, 169–190.

    CAS  Google Scholar 

  45. Thomson, A.M. (1986). A magnesium-sensitive post-synaptic potential in rat cerebral cortex resembles responses to N-methylaspartate. J. Physiol. (Lond.) 370, 531–549.

    CAS  Google Scholar 

  46. Wigström, H., Gustaffson, B. and Huang, Y.Y. (1985). A synaptic potential following single volleys in the hippocampal CA1 region possibly involved in the induction of long-lasting potentiation. Acta. Physiol. Scand. 124, 175–178.

    Article  Google Scholar 

  47. Hablitz, J.J. and Langmoen, I.A. (1986). N-methyl-D-aspartate receptor antagonists reduce synaptic excitation in the hippocampus. J. Neurosci. 6: 102–106.

    PubMed  CAS  Google Scholar 

  48. Dale, N. and Roberts, A. (1985). Dual-component amino acid-mediated synaptic potentials: Excitatory drive for swimming in Xenopus embryos. J. Physiol. (Lond.) 363, 35–59.

    CAS  Google Scholar 

  49. Forsythe, I.D. and Westbrook, G.L. (1986). Monosynaptic activation of NMD A receptors in mouse spinal cord cultures. Soc. Neurosci. Abstr. 12: 62.

    Google Scholar 

  50. Jahr, CE. and Jessell, T.M. (1985). Synaptic transmission between dorsal root ganglion and dorsal horn neurons in culture: Antagonism of monosynaptic excitatory synaptic potentials and glutamate excitation by kynurenate. J. Neurosci. 5, 2281–2289.

    PubMed  CAS  Google Scholar 

  51. Rothman, S.M. and Samaie, M. (1985). Physiology of excitatory synaptic transmission in cultures of dissociated rat hippocampus. J. Neurophysiol. 54, 701–712.

    PubMed  CAS  Google Scholar 

  52. Anis, N.A., Berry, S.C., Burton, N.R. and Lodge, D. (1983). The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmacol. 79, 565–575.

    PubMed  CAS  Google Scholar 

  53. Honey, C.R., Miljkovic, Z. and MacDonald, J.F. (1985). Ketamine and phencyclidine cause a voltage-dependent block of responses to L-aspartic acid. Neurosci. Lett. 61, 135–139.

    Article  PubMed  CAS  Google Scholar 

  54. Nicoll, R.A. and Alger, B.E. (1981). Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science 212, 957–959.

    Article  PubMed  CAS  Google Scholar 

  55. Grillner, S. and Wallén, P. (1985). The ionic mechanisms underlying N-methyl-D-aspartate receptor-induced, tetrodotoxin-resistant membrane potential oscillations in lamprey neurons active during locomotion. Neurosci. Lett. 60, 289–294.

    Article  PubMed  CAS  Google Scholar 

  56. Dunwiddie, T. and Lynch, G. (1979). The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res. 169, 103–110.

    Article  PubMed  CAS  Google Scholar 

  57. Wigström, H., Swann, J.H. and Andersen, P. (1979). Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice. Acta. Physiol. Scand. 105, 126–128.

    Article  PubMed  Google Scholar 

  58. Turner, R.W., Baimbridge, K.G. and Miller, J.J. (1982). Calcium-induced long-term potentiation in the hippocampus. Neuroscience 7, 1411–1416.

    Article  PubMed  CAS  Google Scholar 

  59. Collingridge, G.L., Kehl, S.J. and McLennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46.

    CAS  Google Scholar 

  60. Wigström, H. and Gustaffson, B. (1984). A possible correlate of the postsynaptic condition for long-lasting potentiation in the guinea pig hippocampus in vitro. Neurosci. Lett. 44, 327–332.

    Article  PubMed  Google Scholar 

  61. Harris, E.W., Ganong, A.H. and Cotman, C.W. (1984). Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323, 132–137.

    Article  PubMed  CAS  Google Scholar 

  62. Choi, D.W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 58, 293–297.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Westbrook, G.L., Mayer, M.L., Forsythe, I.D. (1988). Conductance Mechanisms Activated by L-Glutamate. In: Ferrendelli, J.A., Collins, R.C., Johnson, E.M. (eds) Neurobiology of Amino Acids, Peptides and Trophic Factors. Topics in the Neurosciences, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1721-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1721-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8969-2

  • Online ISBN: 978-1-4613-1721-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics