Skip to main content

Neuropeptide Abnormalities in Alzheimer’s and Huntington’s Diseases

  • Chapter
Neurobiology of Amino Acids, Peptides and Trophic Factors

Part of the book series: Topics in the Neurosciences ((TINS,volume 8))

Abstract

Neuropeptides are widely distributed in the central nervous system where they serve as neuroregulators. Recent interest has focused on their role in degenerative neurologic diseases. In this review is described the anatomy of neuropeptides in cerebral cortex and basal ganglia as a framework for interpreting neuropeptide alterations in Alzheimer’s disease (AD) and Huntington’s disease (HD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tomlinson, B.E., Irving, D. and Blessed, G. (1981). Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 49, 419–428.

    Article  PubMed  CAS  Google Scholar 

  2. Donoghue J.P., Wenthold, R.J., and Altschuler, R.A. (1985). Localization of glutaminase-like and aspartate aminotransferase-like immunoreactivity in neurons of cerebral cortex. J. Neurosci. 5, 2597–2608.

    PubMed  CAS  Google Scholar 

  3. Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42, 1–11.

    Article  PubMed  CAS  Google Scholar 

  4. Chronwall, B.M., Chase, T.N. and O’Donohue, T.L. (1984). Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci. Lett. 52, 213–217.

    Article  PubMed  CAS  Google Scholar 

  5. Kowall, N.W., Beal, M.F. and Martin, J.B. (1986). Somatostatin, neuropeptide Y, NADPH diaphorase neurons do not contain neurofibrillary tangles in Alzheimer’s disease cortex. Ann. Neurol. 20, 124.

    Google Scholar 

  6. Nakamura, S. and Vincent, S.R. (1985). Acetylcholinesterase and somatostatin-immuno-reactivity coexist in human neocortex. Neurosci. Lett. 61, 183–187.

    Article  PubMed  CAS  Google Scholar 

  7. Somogyi, P., Hodgson, A.J., Smith, A.D., et al. (1984). Differential populations of GABAergic neurons in the visual cortex and hippocampus of the cat contain somatostatin or cholecystokinin immunoreactive material. J. Neurosci. 4, 2590–2603.

    PubMed  CAS  Google Scholar 

  8. Vincent, S.R., Johansson, O., Hokfelt, T. et al. (1982). Neuropeptide coexistence in human cortical neurons. Nature 298, 65–67.

    Article  PubMed  CAS  Google Scholar 

  9. Emson, P.C. and Hunt, S.P. (1981). Anatomical chemistry of the cerebral cortex. In The Organization of the Cerebral Cortex, Schmitt, F.O., Worden, F.G., Adelman, G., Dennis, S.G., eds., MIT Press, Cambridge, MA, pp. 325–345.

    Google Scholar 

  10. Hendry, S.H., Jones, E.G. and Beinfeld, M.C. (1983). CCK immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels. Proc. Natl. Acad. Sci. USA 80, 2400–2404.

    Article  PubMed  CAS  Google Scholar 

  11. Hendry, S.H., Jones, E.G., DeFelipe, J., et al. (1984). Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proc. Natl. Acad. Sci. USA 81, 6526–6530.

    Article  PubMed  CAS  Google Scholar 

  12. Hendry, S.H., Jones, E.G. and Emson, P.C. (1984). Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J. Neurosci. 4, 2497–2517.

    PubMed  CAS  Google Scholar 

  13. Jones, E.G. and Hendry, S.H. (1986). The peptide containing neurons of the primate cerebral cortex. In Implications of Neuropeptides in Neurological and Psychiatric Diseases, Martin, J.B., Barchus, J., eds., Raven, New York, pp. 163–178.

    Google Scholar 

  14. Schmechel, D.E., Vickrey, B.G., Fitzpatric, D. and Elde, R.P. (1984). GABAergic neurons of mammalian cerebral cortex: Widespread subclass defined by somatostatin content. Neurosci. Lett. 47, 227–232.

    Article  PubMed  CAS  Google Scholar 

  15. Jones, E.G. and Hendry, S.H. (1985). GABAergic, substance P-immunoreactive neurons in monkey cerebral cortex. Neurosci. Abst. 11, 145.

    CAS  Google Scholar 

  16. Eckenstein, F. and Baughman, R. (1984). Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature 309, 153–155.

    Article  PubMed  CAS  Google Scholar 

  17. Hendry, S.H., Houser, C.R., Jones, E.G. and Vaughn, J.E. (1983). Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex. J. Neurocytol. 12, 639–660.

    Article  PubMed  CAS  Google Scholar 

  18. Hendry, S.H. and Jones, E.G. (1981). Sizes and distributions of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex. J. Neurosci. 1, 390–408.

    PubMed  CAS  Google Scholar 

  19. Houser, C.R., Hendry, S.H., Jones, E.G. and Vaughn, J.E. (1983). Morphological diversity of immunocytochemically identified GABA neurons in monkey sensory-motor cortex. J. Neurocytol. 12, 617–638.

    Article  PubMed  CAS  Google Scholar 

  20. Candy, J.M., Perry, R.H., Perry, E.K., et al. (1983). Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s disease. J. Neurol. Sci. 54, 277–289.

    Article  Google Scholar 

  21. Coyle, J.T., Price, D.L. and DeLong, M.R. (1983). Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219, 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  22. Rossor, M.N., Garrett, N.J. and Johnson, A.I. (1982). A postmortem study of the cholinergic and GABA systems in senile dementia. Brain 105, 313–330.

    Article  PubMed  CAS  Google Scholar 

  23. Perry, E.K., Tomlinson, B.E., Blessed, G., et al. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. (Clin. Res.) 2, 1457–1459.

    Article  CAS  Google Scholar 

  24. Bondareff, W., Mountjoy, C.Q. and Roth, M. (1981). Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet 1, 783–784.

    Article  PubMed  CAS  Google Scholar 

  25. Crow, T.J., Cross, A.J., Cooper, S.J., et al. (1984). Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology 23, 1561–1569.

    Article  PubMed  CAS  Google Scholar 

  26. Curcio, C.A. and Kemper, T. (1984). Nucleus raphe dorsalis in dementia of the Alzheimer type: Neurofibrillary changes and neuronal packing density. J. Neuropath. Exp. Neurol. 143, 359–368.

    Article  Google Scholar 

  27. Hardy, J., Adolfsson, R., Alafuzoff, L, et al. (1985). Transmitter deficits in Alzheimer’s disease. Neurochem. Int. 7, 545–563.

    Article  PubMed  CAS  Google Scholar 

  28. Mann, D.M., Lincoln, J., Yates, P.O., et al. (1980). Changes in the monoamine containing neurons of the human central nervous system in senile dementia. Br. J. Psychiatry 136, 533–541.

    Article  PubMed  CAS  Google Scholar 

  29. Mann, D.M., Yates, P.O. and Marcyniuk, B. (1985). Correlation between senile plaque and neurofibrillary tangle counts in cerebral cortex and neuronal counts in cortex and subcortical structures in Alzheimer’s disease. Neurosci. Lett. 56, 51–55.

    Article  PubMed  CAS  Google Scholar 

  30. Mountjoy, C.Q., Roth, M., Evans, N.J. and Evans, H.M. (1983). Cortical neuronal counts in normal elderly controls and demented patients. Neurobiol. Aging 4, 1–11.

    Article  PubMed  CAS  Google Scholar 

  31. Terry, R.D., Peck, A., DeTeresa, R., et al. (1981). Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann. Neurol. 10, 184–192.

    Article  PubMed  CAS  Google Scholar 

  32. Davies, P., Katzman, R. and Terry, R.D. (1980). Reduced somatostatin-like immuno-reactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288, 279–280.

    Article  PubMed  CAS  Google Scholar 

  33. Graveland, G.A., Williams, R.S. and Difiglia M. (1985). Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 277, 770–773.

    Article  Google Scholar 

  34. Ferrier, I.N., Cross, A.J., Johnson, J.A., et al. (1983). Neuropeptides in Alzheimer type dementia. J. Neurol. Sci. 62, 159–170.

    Article  PubMed  CAS  Google Scholar 

  35. Rossor, M.N., Emson, P.C., Mountjoy, C.Q., et al. (1980). Reduced amounts of immuno-reactive somatostatin in the temporal cortex in senile dementia of Alzheimer type. Neurosci. Lett. 20, 373–377.

    Article  PubMed  CAS  Google Scholar 

  36. Rossor, M.N., Iversen, L.L., Reynolds, G.P., et al. (1984). Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br. Med. J. (Clin. Res.) 288, 961–964.

    Article  CAS  Google Scholar 

  37. Beal, M.F., Mazurek, M.F., Svendsen, C.N., et al. (1986). Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer’s disease. Ann. Neurol. 20, 489–495.

    Article  PubMed  CAS  Google Scholar 

  38. Beal, M.F., Growdon, J.H., Mazurek, M.F. and Martin, J.B. (1986). CSF somatostatin-like immunoreactivity in dementia. Neurology 36, 294–297.

    PubMed  CAS  Google Scholar 

  39. Beal, M.F., Mazurek, M.F., Black, P.B. and Martin, J.B. (1985). CSF somatostatin in neurological diseases. J. Neurol. Sci. 71, 91–104.

    Article  PubMed  CAS  Google Scholar 

  40. Candy, J.M., Gascoigne, A.D., Biggins, J. A., et al. (1985). Somatostatin immunoreactivity in cortical and some subcortical regions in Alzheimer’s disease. J. Neurol. Sci. 71, 315–323.

    Article  PubMed  CAS  Google Scholar 

  41. Beal, M.F., Mazurek, M.F., Chattha, G.K., et al. (1986). Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease. Ann. Neurol. 20, 282–288.

    Article  PubMed  CAS  Google Scholar 

  42. Beal, M.F., Mazurek, M.F., Tran, V.T., et al. (1985). Somatostatin receptors are reduced in cerebral cortex in Alzheimer’s disease. Science 229, 289–291.

    Article  PubMed  CAS  Google Scholar 

  43. Crystal, H.A. and Davies P. (1982). Cortical substance P-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type. J. Neurochem. 38, 1781–1784.

    Article  PubMed  CAS  Google Scholar 

  44. Yates, CM., Harmar, A.J., Rosie, R., et al. (1983). Thyrotropin-releasing hormone, luteinizing hormone-releasing hormone and substance P immunoreactivity in post-mortem from cases of Alzheimer-type dementia and Down’s syndrome. Brain Res. 258, 45–52.

    Article  CAS  Google Scholar 

  45. Beal, M.F. and Mazurek, M.F. Substance P-like immunoreactivity is reduced in Alzheimer’s disease cerebral cortex. Neurology, in press.

    Google Scholar 

  46. Vincent, S.R., Satoh, K., Armstrong, D.M. and Fibiger, H.C. (1983). Substance P in the ascending cholinergic reticular system. Nature 306, 688–691.

    Article  PubMed  CAS  Google Scholar 

  47. Sakamoto, N., Takatsuji, K., Shiosaka, S. and Tohyama, M. (1985). Evidence for the existence of substance P-like immunoreactive neurons in the human cerebral cortex: An immunohistochemical analysis. Brain Res. 325, 322–324.

    Article  PubMed  CAS  Google Scholar 

  48. Bissette, G., Reynolds, G.P., Kilts, CD., et al. (1985). Corticotropin-releasing factor-like immunoreactivity in senile dementia of the Alzheimer type. JAMA 265, 3067–3069.

    Article  Google Scholar 

  49. Desouza, E.B., Whitehouse, P.J., Kuhar, M.J., et al. (1986). Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature 319, 593–595.

    Article  CAS  Google Scholar 

  50. Rossor, M.N., Fahrenkrug, J., Emson, P.C., et al. (1980). Reduced cortical choline acetyl-transferase activity in senile dementia of Alzheimer type is not accompanied by changes in vasoactive intestinal polypeptide. Brain Res. 201, 249–253.

    Article  PubMed  CAS  Google Scholar 

  51. Rossor, M.N., Rehfeld, J.F., Emson, P.C., et al. (1981). Normal cortical concentrations of cholecystokinin-like immunoreactivity with reduced choline acetyltransferase activity insenile dementia of Alzheimer type. Life Sci. 29, 405–410.

    Article  PubMed  CAS  Google Scholar 

  52. Hays, S.E. and Paul, S.M. (1982). CCK receptors and human neurological disease. Life Sci. 31, 319–322.

    Article  PubMed  CAS  Google Scholar 

  53. Nemeroff, C.B., Bissette, G., Busby, W.H., et al. (1983). Regional brain concentrations of neurotensin, thyrotropin releasing hormone and somatostatin in Alzheimer’s disease. Neurosci. Abst. 9, 1052.

    Google Scholar 

  54. Rossor, M.N., Emson, P.C. and Mountjoy, C.A. (1982). Neurotransmitters of the cerebral cortex in senile dementia of Alzheimer’s type. Exp. Brain Res. 5 (Suppl), 33–157.

    Google Scholar 

  55. Yates, CM., Fink, G., Bennie, J.G., et al. (1985). Neurotensin immunoreactivity in postmortem brain is increased in Down’s syndrome but not in Alzheimer-type dementia. J. Neurol. Sci. 67, 327–335.

    Article  PubMed  CAS  Google Scholar 

  56. Dewied, D. (1976). Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci. 19, 685–690.

    Article  CAS  Google Scholar 

  57. Mazurek, M.F., Beal, M.F. and Martin, J.B. (1985). Vasopressin in postmortem Alzheimer brain. Ann. Neurol. 18, 143–144.

    Google Scholar 

  58. Mazurek, M.F., Beal, M.F., Bird, E.D. and Martin, J.B. Oxytocin concentration is increased in the hippocampus in Alzheimer’s disease. Neurology, in press.

    Google Scholar 

  59. Iversen, L.L. and Bloom, F.E. (1979). Studies of the uptake of 3H-GABA and 3H-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 41, 131–143.

    Article  Google Scholar 

  60. Ellison, D.W., Beal, M.F., Mazurek, M.F., Malloy, J.R., Bird, E.D. and Martin J.B. Amino acid neurotransmitter abnormalities in Huntington’s disease and the quinolinic acid animal model of Huntington’s disease. Brain, in press.

    Google Scholar 

  61. Alzheimer, A. (1907). Uber ein eigenartige erkrankung der hinnrinde. Allg. Z. Psychiatr. 64, 146–148.

    Google Scholar 

  62. Probst, A., Basler, V., Brow, B. and Ulrich J. (1983). Neuritic plaques in senile dementia of Alzheimer type: A golgi analysis in the hippocampal region. Brain Res. 268, 249–254.

    Article  PubMed  CAS  Google Scholar 

  63. Joynt, R.J. and McNeill, T.H. (1984). Neuropeptides in aging and dementia. Peptides (Fayetteville) 5 (Suppl. 1), 269–274.

    Article  PubMed  CAS  Google Scholar 

  64. Roberts, G.W., Crow, T.J. and Rolak, J.M. (1985). Location of neuronal tangles in somatostatin neurons in Alzheimer’s disease. Nature 314, 92–94.

    Article  PubMed  CAS  Google Scholar 

  65. Morrison, J.H., Rogers, J., Scherr, S., et al. (1985). Somatostatin immunoreactivity in neuritic plaques of Alzheimer’s patients. Nature 31, 490–492.

    Google Scholar 

  66. Nakamura, S. and Vincent, S.R. (1986). Somatostatin and neuropeptide Y-immunoreactive neurons in the neocortex in senile dementia of Alzheimer’s type. Brain Res. 370, 11–20.

    Article  PubMed  CAS  Google Scholar 

  67. Chan-Palay, V., Lang, W., Allen, Y.S., et al. (1985). Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer’s-type dementia. J. Comp. Neurol. 238, 390–400.

    Article  PubMed  CAS  Google Scholar 

  68. Chan-Palay, V., Lang, W., Haesler, U., Kohler, C. and Yasargil G. (1986). Distribution of altered hippocampal neurons and axons immunoreactive with antisera against neuropeptide Y in Alzheimer’s-type dementia. J. Comp. Neurol. 248, 376–394.

    Article  PubMed  CAS  Google Scholar 

  69. Armstrong, D.M., Leroy, S., Shields, D., and Terry, R.D. (1985). Somatostatin-like immunoreactivity within neuritic plauqes. Brain Res. 338, 71–79.

    Article  PubMed  CAS  Google Scholar 

  70. Struble, R.G., Kitt, CA., Walker, L.C., Cork, L.C and Price D.L. (1984). Somatostatiner-gic neurities in senile plaques of aged non-human primates. Brain Res. 324, 394–396.

    Article  PubMed  CAS  Google Scholar 

  71. Kowall, N.W., Beal, M.F. and Martin, J.B. (1986). Neuropeptide Y, somatostatin and NADPH diaphorase reactive fibers contribute to senile plaque formation in Alzheimer’s disease. Neurology 36 (Suppl 1), 224.

    Google Scholar 

  72. Armstrong, D.M. and Terry, R.D. (1985). Substance P immunoreactivity within neuritic plaques. Neurosci. Lett. 58, 139–144.

    Article  PubMed  CAS  Google Scholar 

  73. Price, D.L., Powers, R.E., Walker, L.C, Struble, R.G., Whitehouse, P.J., Vale, W.W. and DeSouza, E.B. (1986). Corticotropin releasing factor immunoreactivity in senile plaques. Neurosci. Abst. 12, 98.

    Google Scholar 

  74. Struble, R.G., Powers, R.E., Casanova, M.F., et al. (1985). Multiple transmitter-specific markers in senile plaques in Alzheimer’s disease. Neurosci. Abst. 11, 953.

    Google Scholar 

  75. Graveland, G. A., Williams, R.S. and Difiglia, M. (1985). A golgi study of the human striatum: Neurons and afferent fibers. J. Comp. Neurol. 234, 317–333.

    Article  PubMed  CAS  Google Scholar 

  76. Graybiel, A.M. and Ragsdale C.W. (1983). Biochemical anatomy of the striatum. In Chemical Neuroanatomy, Emson, P.C., ed., Raven, New York, pp. 427–504.

    Google Scholar 

  77. Ribak, CE., Vaughn, J.E. and Roberts, E. (1979). The GABA neurons and their axon terminals in the rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol. 187, 261–284.

    Article  PubMed  CAS  Google Scholar 

  78. Aronin, N., Difiglia, M., Graveland, G.A., et al. (1984). Localization of immunoreactive enkephalins in GABA synthesizing neurons of the rat neostriatum. Brain Res. 300, 376–380.

    Article  PubMed  CAS  Google Scholar 

  79. Difiglia, M., Aronin, N. and Martin, J.B. (1982). Light and electron microscopic localizations of immunoreactive leu-enkephalin in the monkey basal ganglia. J. Neurosci. 2, 203–320.

    Google Scholar 

  80. Bolam, J.P., Somogyi, P., Takagi, H., et al. (1983). Localization of substance P-like im-munoreactivity in neurons and nerve terminals in the neostriatum of the rat: A correlated light and electron microscopic study. J. Neurocytol. 12, 325–344.

    Article  PubMed  CAS  Google Scholar 

  81. Chesselet, M.F. and Graybiel, A.M. (1983). Met-enkephalin-like and dynorphin-like im-munoreactivities of the basal ganglia of the cat. Life Sci. 33, 37–40.

    Article  PubMed  CAS  Google Scholar 

  82. Zamir, N., Palcovitz, M., Weber, E., et al. (1984). A dynorphinergic pathway of leu-enkephalin production in rat substantia nigra. Nature 307, 643–645.

    Article  PubMed  CAS  Google Scholar 

  83. Bolam, J.P., Clarke, D.J., Smith, A.D. and Somogyi, P. (1986). A type of aspiny neuron in the rat neostriatum accumulates [3H]gamma-aminobutyric acid: Peptides derived from pro-dynorphin are decreased in basal ganglia of Huntington’s disease brains. Brain Res. 372, 155–158.

    Article  Google Scholar 

  84. Difiglia, M. and Aronin, N. (1984). Quantitative electron microscopic study of immunoreactive somatostatin axons in the rat neostriatum. Neurosci. Lett. 50, 325–331.

    Article  PubMed  CAS  Google Scholar 

  85. Kowall, N., Ferrante, R.J., Beal, M.F. and Martin, J.B. (1985). Characteristics, distribution and interrelationships of somatostatin, neuropeptide Y, and NADPH-diaphorase in human caudate nucleus. Neurosci. Abst. 11, 209.

    Google Scholar 

  86. Takagi, H., Somogyi, P., Somogyi, J. and Smith, A.D. (1983). Fine structural studies of a type of somatostatin immunoreactive neuron and its synaptic connections in the rat striatum: A correlated light and electron microscopic study. J. Comp. Neurol. 214, 1–16.

    Article  PubMed  CAS  Google Scholar 

  87. Vincent, S.R. and Johansson, O. (1983). Striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity. A light and electron microscopic study. J. Comp. Neurol. 217, 264–270.

    Article  PubMed  CAS  Google Scholar 

  88. Vincent, S.R., Johansson, O., Hokfelt, T., et al. (1983). NADPH-diaphorase: A selective histochemical marker for striatal neurons containing both somatostatin- and avian pancreatic polypeptide (APP)-like immunoreactivities. J. Comp. Neurol. 217, 252–263.

    Article  PubMed  CAS  Google Scholar 

  89. Takagi, H., Mizuta, H., Matsuda, T., et al. (1984). The occurrence of cholecystokinin-like immunoreactive neurons in the rat neostriatum: Light and electron microscopic analysis. Brain Res. 309, 346–369.

    Article  PubMed  CAS  Google Scholar 

  90. Theriault, E., Marshall, P.E. and Landis, D.M. (1984). Morphology of neurons containing VIP-like immunoreactivity in the rat striatum. Neurosci. Abst. 10, 701.

    Google Scholar 

  91. Vincent, S.R., Staines, W.A. and Fibiger, H.C. (1983). Histochemical demonstration of separate populations of somatostatin and cholinergic neurons in the rat striatum. Neurosci. Lett. 35, 111–114.

    Article  PubMed  CAS  Google Scholar 

  92. Zaborszky, L., Alheid, G.F., Beinfield, M.C., et al. (1985). Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study. Neuroscience 14, 427–453.

    Article  PubMed  CAS  Google Scholar 

  93. Aronin, N., Cooper, P.E., Lorenz, L.J., et al. (1983). Somatostatin is increased in the basal ganglia in Huntington’s disease. Ann. Neurol. 13, 519–526.

    Article  PubMed  CAS  Google Scholar 

  94. Buck, S.H., Burks, T.F., Brown, M. and Yamamura, H.I. (1981). Reduction in basal ganglia and substantia nigra substance P levels in Huntington’s disease. Brain Res. 209, 464–469.

    Article  PubMed  CAS  Google Scholar 

  95. Emson, P.C., Arregui, A., Clement-Jones, V., et al. (1980). Regional distribution of methionine-enkephalin and substance P-like immunoreactivity in normal human brain and in Huntington’s disease. Brain Res. 199, 147–160.

    Article  PubMed  CAS  Google Scholar 

  96. Gale, J.S., Bird, E.D., Spokes, E.G., et al. (1978). Human substance P: Distribution in controls and Huntington’s chorea. J. Neurochem. 30, 633–634.

    Article  PubMed  CAS  Google Scholar 

  97. Kanazawa, I., Bird, E., O’Connell, R. and Powell, D. (1977). Evidence for a decrease in substance P content of substantia nigra in Huntington’s chorea. Brain Res. 120, 387–392.

    Article  PubMed  CAS  Google Scholar 

  98. Kanazawa, I., Sasaki, H., Muramoto, O., et al. (1985). Studies on neurotransmitter markers and striatal neuronal cell density in Huntington’s disease and dentatorubropallidoluysian atrophy. J. Neurol. Sci. 70, 151–165.

    Article  PubMed  CAS  Google Scholar 

  99. Marshall, P.E., Landis, D.M. and Zalneraitis, E. (1983). Immunocytochemical studies of substance P and leucine-enkephalin in Huntington’s disease. Brain Res. 298, 11–26.

    Article  Google Scholar 

  100. Dawbarn, D., Zamin, N., Waters, CM., Hunt, S.P., Emson, P.C. and Brownstein, M.J. (1983). Combination of golgi-staining, autoradigoraphy and electronmicroscopy. J. Comp. Neurol. 213, 121–134.

    Article  Google Scholar 

  101. Seizinger, B.R., Leibisch, D.C., Kish, S.J., Arendt, R.M., Hornykiewicz, O. and Herz, A. (1986). Opioid peptides in Huntington’s disease: Alterations in prodynorphin and proenke-phalin system. Brain Res. 378, 405–408.

    Article  PubMed  CAS  Google Scholar 

  102. Nemeroff, C.B., Youngblood, W.W., Manberg, P.J., et al. (1983). Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia. Science 221, 972–975.

    Article  PubMed  CAS  Google Scholar 

  103. Dawbarn, D., Dequidt, M.E. and Emson, P.C. (1985). Survival of basal ganglia neuropeptide Y/somatostatin neurons in Huntington’s disease. Brain Res. 340, 251–260.

    Article  PubMed  CAS  Google Scholar 

  104. Beal, M.F., Ellison, D.W., Mazurek, M.F., Malloy, J.R., Bird, E.D. and Martin, J.B. (1986). Neuropeptide Y is increased in Huntington’s disease. Ann Neurol.

    Google Scholar 

  105. Beal, M.F., Domesick, V.B. and Martin, J.B. (1985). Effects of lesions in the amygdala and periventricular hypothalamus on striatal somatostatin-like immunoreactivity. Brain Res. 330, 309–316.

    Article  PubMed  CAS  Google Scholar 

  106. Beal, M.F. and Martin, J.B. (1983). Effect of lesions on somatostatin-like immunoreactivity in the rat striatum. Brain Res. 266, 67–73.

    Article  PubMed  CAS  Google Scholar 

  107. Ferrante, R.J., Kowall, N.W., Beal, M.F., et al. (1985). Selective sparing of a class of striai neurons in Huntington’s disease. Science 230, 561–563.

    Article  PubMed  CAS  Google Scholar 

  108. Ferrante, R.J., Beal, M.F., Kowall, N.W., Richardson, E.P. and Martin, J.B. (1987). Sparing of acetylcholinesterase-containing striatal neurons in Huntington’s disease. Brain Res. 411, 162–166.

    Article  PubMed  CAS  Google Scholar 

  109. Schwarcz, R., Foster, A.C., French, E.D., et al. (1984). Excitotoxic models for neurodegenerative disorders. Life Sci. 35, 19–32.

    Article  PubMed  CAS  Google Scholar 

  110. Beal, M.F., Kowall, N.W., Ellison, D.W., et al. (1986). Replication of the neurochemical characteristics of Huntington’s disease with quinolinic acid. Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  111. Schwarcz, R., Whetsell, W.O. and Mangano, R.M. (1983). Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316–318.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Martin, J.B., Beal, M.F. (1988). Neuropeptide Abnormalities in Alzheimer’s and Huntington’s Diseases. In: Ferrendelli, J.A., Collins, R.C., Johnson, E.M. (eds) Neurobiology of Amino Acids, Peptides and Trophic Factors. Topics in the Neurosciences, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1721-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1721-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8969-2

  • Online ISBN: 978-1-4613-1721-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics