Skip to main content

Platinum-Based Organometallic Complexes of Vitamin C and Related Analogs as Antitumor Agents

  • Chapter
Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy

Part of the book series: Developments in Oncology ((DION,volume 54))

Abstract

While cisplatin has proven effective as a antitumor agent in treating a variety of forms of cancer, such as testicular and ovarian carcinomas,1 a substantial effort has been made in new drug development programs to improve the therapeutic properties of platinum-based antitumor agents.2 Major objectives of research in this area include the development of new agents that have an improved spectrum of activity and are more effective and less toxic than cisplatin.3 To date these efforts have produced a number of new compounds that show good activity in various animal tumor screens.4 While recent clinical studies show that some second-generation analogs, such as carboplatin, cis-[Pt(NH3)2-(1,1 -cyclobutanedicarboxylate)]5, are less toxic than cisplatin, the search for new agents that display a significantly different spectrum of activity is continuing in laboratories worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loehrer, P.J.; Einhorn, L.H. Ann. Intern Med. 1984,100,704.

    PubMed  CAS  Google Scholar 

  2. Hacker, M.P.; Douple, E.B.; Krakoff, I.H., Eds.; “Platinum Coordination Complexes in Cancer Chemotherapy”; Martinus-Nijhoff: Boston, 1984.

    Google Scholar 

  3. Prestayko, A.E.; Crooke, S.T.; Carter, S.K., Eds.; “Cis-platin, Status and New Developments”; Academic Press: New York, 1980.

    Google Scholar 

  4. Lippard, S.J., Ed.; “Platinum, Gold and Other Metal Chemo-therapeutic Agents”; American Chemical Society: Washington, D.C., 1983; ACS Symp. Ser. No. 209.

    Google Scholar 

  5. McBrien, D.C.H.; Slater, T.F., Eds.; “Biochemical Mechanism of Platinum Antitumor Drugs”; IRL Press, Washington, DC, 1986.

    Google Scholar 

  6. Carter, S.K. In ref 2a, p 359.

    Google Scholar 

  7. Rose, W.C.; Bradner, W.T. In ref 2b, p. 229.

    Google Scholar 

  8. Egorin, M.J.; Van Echo, D.A.; Olman, E.A.; Whitacre, M.Y.; Forrest, A.; Aisner, J. Cancer Res. 1985,45,6502.

    CAS  Google Scholar 

  9. Calvert, A.H. In ref 2d, p 307.

    Google Scholar 

  10. Barnard, C.F.J.; Cleare, M.J.; Hydes, P.C. Chem. Brit. 1986, 22,1001.

    CAS  Google Scholar 

  11. Appleton, T.G.; Hall, J.R.; Ralph, S.F. Inorg. Chem. 1985, 24,4685.

    Article  CAS  Google Scholar 

  12. Hollis, L.S.; Stern, E.W.; Amundsen, A.R.; Miller, A.V.; Doran, S.L. J. Am. Chem. Soc. 1987,109,3596.

    Article  CAS  Google Scholar 

  13. Hollis, L.S.; Amundsen, A.R.; Stern, E.W. J. Am. Chem. Soc. 1985,107,274.

    Article  CAS  Google Scholar 

  14. Crystallographic data. [Pt(S,S-dach) (C2,O5-Asc)] 5H2O crystallizes in the orthorhombic space group P212121 with the following cell parameters: a = 12.366(1), b = 22.371(3), c = 6.782(1) Å, V = 1876.3 Å3, Z = 4. The structure was solved by using standard Patterson and Fourier methods using 1943 reflections (2θ < 50°) collected on an Enraf-Nonius CAD-4F diffractometer. Refinement of the absorption corrected data, with all atoms (execpt H) assigned anisotropic thermal parameters converged at Rf = 0.033 and Rw = 0.045. Full details will be reported at a later date.

    Google Scholar 

  15. Basch, H.; Krauss, M.; Stevens, W.J.; Inorg. Chem. 1986,25, 4777.

    Article  CAS  Google Scholar 

  16. Hollis, L.S.; Stern, E.W. Inorg. Chem. Submitted for publication.

    Google Scholar 

  17. Farrel, N. In ref 2c, p 279.

    Chapter  Google Scholar 

  18. Crystallographic data. [Pt(R,R-dach)(C2-CHD)(O1-CHD)] (16) crystallizes in the space group PI with the following cell parameters: a = 10.225(1), b = 11.841(1), c = 9.387(1) Å, α = 112.15(1)°, β = 106.15(1)°, γ = 87.91(1)°, V = 1008.2 Å3, Z = 2. The structure was solved by using standard Patterson and Fourier methods using 4475 unique reflections (20 < 54°). Refinement of the absorption corrected data, with all atoms, except Pt, N and O, assigned isotropic thermal parameters converged at Rf = 0.023 and Rw = 0.025. Full details will be reported at a later date.

    Google Scholar 

  19. Crystallographic data. [Pt(en)(C3,O8-CPD2)] (19) crystallizes in the triclinic space group P1 with the following cell parameters: a = 10.528(2), b = 11.533(2), c = 7.728(1) Å,α= 89.91(1)°, β= 106.25(1)°, γ = 70.92(1)°, V = 841.0 Å3, Z = 2. The structure was solved as in ref 9, using 2098 reflections (2θ < 45°). Refinement of the absorption corrected data, with all atoms (except H) assigned anisotropic thermal parameters converged at Rf = 0.019 and Rw = 0.029. Full details will be reported at a later date.

    Google Scholar 

  20. The test protocol for the S180a screen is described in ref 16. Compounds were administered on day one using 6 mice/dose; an ILS > 50% indicates activity. The reported dose is that which gave the the best %ILS. The test protocol for the L1210 screen is given in ref 17. Compounds were administered on day one and an ILS > 25% indicates activity. Surviving mice were counted as dying on the day of evaluation.

    Google Scholar 

  21. Amundsen, A.R.; Stern, E.W. U.S. Patent 4 457 926, 1984.

    Google Scholar 

  22. Rose, W.C.; Schurig, J.E.; Huftalen, J.B.; Bradner, W.T. Cancer Treat. Rep. 1982,66,135.

    PubMed  CAS  Google Scholar 

  23. Data not shown.

    Google Scholar 

  24. Abbreviations: CHD, 1,3-cyclohexanedione; MCHD, 5-methyl-CHD; DCHD, 5,5-dimethyl-CHD; CPD, 1,3-cyclopentanedione; CPD2, CPD dimer.

    Google Scholar 

  25. Kidani, Y.; Inagaki, K.; Iigo, M.; Hoshi, A.; Kuretani, K. J. Med. Chem. 1978,21,1315.

    Article  PubMed  CAS  Google Scholar 

  26. Kidiani, Y.; Inagaki, K.; Saito, R.; Tsukagoshi, S. Wadley Med. Bull. 1977,7,197.

    Google Scholar 

  27. Saito, R.; Kidani, Y. Bull. Chem. Soc. Jpn. 1986,59,1689.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Hollis, S.L., Doran, S.L., Amundsen, A.R., Stern, E.W. (1988). Platinum-Based Organometallic Complexes of Vitamin C and Related Analogs as Antitumor Agents. In: Nicolini, M. (eds) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy. Developments in Oncology, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1717-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1717-3_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8967-8

  • Online ISBN: 978-1-4613-1717-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics